
gsa-module Documentation
Release 0.9.0

Damar Wicaksono

Jul 06, 2017

Contents

1 gsa-module Documentation 3
1.1 gsa-module Basics . 3
1.2 User’s Guide . 5
1.3 Theory and Implementation . 11
1.4 Developer’s Guide . 24
1.5 About gsa-module . 25
1.6 Gallery of Applications to Test Functions . 25
1.7 gsa-module Modules reference documentation . 41

2 Indices and tables 43

i

ii

gsa-module Documentation, Release 0.9.0

Welcome to the gsa-module package documentation, a python3 package to conduct global sensitivity analysis of
model output.

If you’re just getting started with gsa-module, please start with gsa-module Basics. If you’re already familiar with
it, refer to User’s Guide and gsa-module Modules reference documentation for further detail and reference. If you’re
curious with some theories and detail of implementation behind global sensitivity analysis methods check the Theory
and Implementation. Finally, if you’re thinking to make modification or extend the capability of the package perhaps
it is a good idea to check the Developer’s Guide.

Contents 1

gsa-module Documentation, Release 0.9.0

2 Contents

CHAPTER 1

gsa-module Documentation

gsa-module Basics

Introduction

gsa-module is a Python3 package implementing several global sensitivity analysis methods for com-
puter/simulation experiments. The implementation is based on a black-box approach where the computer model
(or any generic function) is externally implemented to the module itself. The module accepts the model outputs and
the design of experiment (optional, only for certain methods) and compute the associated sensitivity measures. The
package also includes routines to generate normalized design of experiment file to be used in the simulation experi-
ment based on several algorithms (such as simple random sampling or latin hypercube) as well as simple routines to
post-processed multivariate raw code output such as its maximum, minimum, or average.

The general calculation flow chart involved in using the gsa-module can be seen in the figure below.

3

gsa-module Documentation, Release 0.9.0

List of Features

The following is the main features of the current release (v0.9.0):

• Capability to generate design of computer experiments using 4 different methods: simple random sampling
(srs), latin hypercube sampling (lhs), sobol’ sequence, and optimized latin hypercube using either command
line interface gsa_create_sample or the module API via import gsa_module

• Sobol’ quasi-random number sequence generator is natively implemented in Python3 based on C++ implemen-
tation of Joe and Kuo (2008).

• Randomization of the Sobol’ quasi-random number using random shift procedure

• Optimization of the latin hypercube design is done via evolutionary stochastic algorithm (ESE)

• Generation of separate test points based on a given design using Hammersley quasi-random sequence

• Capability to generate design of computer experiments for screening analysis (One-at-a-time design), based on
the trajectory design (original Morris) and radial design (Saltelli et al.)

• Capability to compute the statistics of elementary effects, standardized or otherwise both for trajectory and
radial designs. The statistics (mean, mean of absolute, and standard deviation) are used as the basis of parameter
importance ranking.

• Capability to estimate the first-order (main effect) Sobol’ sensitivity indices using two different estimators
(Saltelli and Janon).

4 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

• Capability to estimate the total effect Sobol’ sensitivity indices using two different estimators (Sobol-Homma
and Jansen).

• All estimated quantities are equipped with their bootstrap samples

Installing gsa-module

Obtaining and installing gsa-module is simple. First is to download the current version the current version hosted
in bitbucket and install it to your machine locally. gsa-module is written in python3 and can be installed using pip:

> git clone https://bitbucket.org/lrs-uq/gsa-module
> cd gsa_module
> pip install .

Verifying the installation can be done by invoking:

> python
>>> import gsa_module as gsa
>>> gsa.__version__
'0.9.0'

If you want to modify the package on the fly without re-installing it everytime to check the effect use the -e (editable
mode) when invoking pip:

> pip install -e .

Tutorial 1: Parameter Screening of the Sobol-G Test Function

This page is still under preparation

Tutorial 2: Sobol’ Indices of the Borehole Function

This page is still under preparation

User’s Guide

General Purpose Design of Experiment

Successful installation of gsa-modulewill give access to two executables in the path useful to create various designs
for computer experiment. The command line utility gsa_create_sample can be invoked from the terminal to
generate the design (or design matrix file) using the following command:

> gsa_create_sample -n <number of samples/points> \
-d <number of dimensions/variables> \
-m <method of generation {srs, lhs, sobol, lhs-opt}> \
-s <random seed number> \
-o <design matrix output filename> \
-sep <delimiter for the design matrix file> \
-dirnumfile <direction number file, Sobol' only> \
-excl_nom <exclude nominal file, Sobol' only> \
-rand <randomize the Sobol' sequence, Sobol' only> \
-nopt <number of optimization iterations, Sobol' only>

1.2. User’s Guide 5

https://bitbucket.org/lrs-uq/gsa-module

gsa-module Documentation, Release 0.9.0

Brief explanation of these parameters can be shown by invoking:

> gsa_create_sample --help

The table below lists the complete options/flag in detail with their respective default values.

No. Short
Name

Long Name Type Re-
quired

Description De-
fault

1 -h –help flag No Show help message False
2 -n –num_samples inte-

ger
Yes The number of samples/design points None

3 -d –
num_dimensions

inte-
ger

Yes The number of dimensions None

4 -m –method string No The method to generate sample {srs, lhs,
sobol, lhs-opt}

srs

5 -s –seed_number inte-
ger

No The random seed number None

6 -o –output_file string No The output filename see
below

7 -sep –delimiter string No The delimiter for the file {csv, tsv, txt} csv
8 -

dirnumfile
–
direction_numbers

string No The path to Sobol’ sequence generator None

9 -excl_nom –
exclude_nominal

flag No Exclude the nominal point {0.5} in the
design

False

10 -rand –
randomize_sobol

flag No Random shift the Sobol’ sequence False

11 -nopt –
num_iterations

inte-
ger

No The maximum bumber of optimization
iterations

100

12 -V –version flag No Show the program’s version number and exit False

Note that options number 8-9 are valid only for Sobol’ design, while option number 11 is valid only for Optimized
LHS. Without specifying the output filename explicitly, the design matrix file will be produced with the following
naming convention:

> <method>_<num_samples>_<num_dimensions>.csv

Example

For example, upon executing the following command in the terminal:

> gsa_create_sample -n 20 -d 5 -m sobol

a csv file with filename sobol_20_5.csv is produced in the current working directory. The first 5 lines (out of 20)
the file are as follow:

0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00
5.000000e-01,5.000000e-01,5.000000e-01,5.000000e-01,5.000000e-01
7.500000e-01,2.500000e-01,2.500000e-01,2.500000e-01,7.500000e-01
2.500000e-01,7.500000e-01,7.500000e-01,7.500000e-01,2.500000e-01
3.750000e-01,3.750000e-01,6.250000e-01,8.750000e-01,3.750000e-01

In each line, the listed values correspond to the input parameters at which the model is to be evaluated. The values are
normalized between 0 to 1.

6 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

Morris Screening Method

Successful installation of gsa-module will give access to two executables in the path useful to carry out Morris
screening analysis on model outputs:

1. gsa_morris_generate: executable to generate Morris (One-at-a-Time, OAT) design

2. gsa_morris_analyze: executable to compute the statistics of the elementary effects given model in-
puts/outputs as files

A more theoretical background of the method can be found in the implementation section of this documentation.

Generating Morris Design (Sample)

The first step in conducting sensitivity analysis by Morris screening method is to generate One-at-a-Time design. The
Morris design generator driver script can be invoked from the terminal using the following command:

> gsa_morris_generate -r <number of blocks/replications> \
-d <number of input dimensions> \
-o <design matrix output filename> \
-sep <delimiter for the output file {csv, tsv, txt}, default =

→˓csv> \
-ss <sampling scheme {trajectory or radial}> \
-p <trajectory scheme only, number of levels> \
-s <trajectory scheme only, random seed number> \
-sobol <radial scheme only, the fullpath to Sobol' sequence

→˓generator executable> \
-dirnum <radial scheme only, the fullpath to Sobol' sequence

→˓generator direction numbers file>

Brief explanation on this parameter can be shown using the following command:

> gsa_morris_generate --help

By default the naming convention of the output file (if not explicitly specified is):

<sampling scheme>_<number of replications>_<number of input dimensions>_<number of
→˓levels, trajectory only>.csv

In general, the larger the number of replications the more accurate the sensitivity measures are. On the other hand,
a large number of levels (in trajectory design) increases the granularity in the input parameter space exploration.
However, this only makes sense if there is large number of replications otherwise there is big risk of using unbalance
design (bias in some part of input parameter space)

Example

As an example, consider the following command:

> gsa_morris_generate -r 10 -d 4 -p 6

The above command will generate a csv file with the name of trajectory_10_4_6.csv containing 50 rows
and 4 columns. 50 rows are obtained from the 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠× (𝑖𝑛𝑝𝑢𝑡𝑠+ 1) formula and it corresponds to the number of
model evaluations, while the number of columns corresponds to the number of input dimensions. In OAT design only
one parameter is changed between perturbation and in the case of trajectory scheme there is no base point per se as
the perturbations are carried out one parameter at a time from the last perturbed point. In the example above the size
of grid jump (∆ = 2/3) is locked to the number of levels.

Another example with more explicit specification of arguments:

1.2. User’s Guide 7

gsa-module Documentation, Release 0.9.0

> gsa_morris_generate -r 10 -d 6 -ss radial \
-o test_radial \
-sep txt \
-sobol ./path_to_sobol_gen/sobol_gen.x \
-dirnum ./path_to_sobol_gen/dirnum.txt

The above command will generate a space separated file test_radial.txt containing 70 rows and 6 columns.
The radial OAT design is generated using the specified Sobol’ sequence generator. In the radial design, multiple base
points are generated for different replications. The perturbation per parameter in each replication is relative to the base
point. Furthermore, number of level is not required to be specified as the size of grid jump differs from parameter to
parameter and from replication to replication.

Executing Model

Following the design philosophy of gsa-module the model executions are implemented outside the module itself.
The most important thing to remember is that the OAT design generated using gsa_morris_generate is normal-
ized (between [0,1]). If the actual model has a different scale of parameters or different probability distribution, the
proper transformation of the design point is to be carried out prior to the model evaluation. Note also that the results
of the execution should be saved inside a text file with rows corresponding to the results of each model execution.

In general, the number of model evaluations, both for trajectory and radial scheme, are related to the number of
replications (r) and the number of input dimensions (k):

𝑛𝑟𝑢𝑛𝑠 = 𝑟 × (𝑘 + 1)

Analyzing the I/O of Morris Experimental Runs

The last step in conducting the Morris screening analysis is to compute the statistics of the elementary effects for each
input. The minimum requirements for this computation are the design file and its corresponding model output. If
necessary, the rescaled design file can also be specified to compute the standardized version of the elementary effects.
The driver script to analyze the inputs/outputs of Morris experimental run can be invoked from the terminal using the
following command:

> gsa_morris_analyze -in <the normalized inputs file> \
-ir <the rescaled inputs file> \
-o <the model/function outputs file> \
-output <the results of the analysis output file> \
-mc <Verbose model error checking> \

Brief explanation on this parameter can be shown using the following command:

> gsa_morris_analyze --help

By default, the naming convention of the results of the analysis output file is:

<normalized inputs filename>-<model outputs file>.csv

The -mc flag is to verbosely give report on the model specification consistency. This includes:

1. Number of input dimensions in the design file

2. Number of blocks/replications in the design file

3. Total number of runs

4. Type of design

8 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

5. Number of levels and grid jump size (trajectory scheme only)

6. Rescaled inputs if specified

This information (except number 6) is directly inferred from the content of the normalized design file.

Example

As an example, consider that a 4-parameter model was evaluated according to the OAT design in the file
trajectory_10_4_10.csv. The output of the model was saved inside a file 4paramsFunction.csv.

To compute the statistics of the elementary effects of this I/O pair, invoke the following command:

> gsa_morris_analyze -in ./trajectory_10_4_10.csv -o ./4paramsFunction.csv -mc

The flag -mc will result in verbose reporting of the model specification:

Number of Input Dimensions = 4
Number of Blocks/Replications = 10
Total Number of Runs = 50
Type of Design = trajectory
Number of levels (trajectory) = 10 (Delta = 0.5556)
Rescaled Inputs = None

The results of the analysis is saved inside the file trajectory_10_4_10-4paramsFunction.csv with the
following contents:

mu, mu_star, std_dev, std_mu, std_mu_star, std_std_dev
9.738333e+01,9.738333e+01,3.452392e+01,0.000000e+00,0.000000e+00,0.000000e+00
6.596656e+01,6.596656e+01,3.181203e+01,0.000000e+00,0.000000e+00,0.000000e+00
3.814122e+01,3.814122e+01,2.275404e+01,0.000000e+00,0.000000e+00,0.000000e+00
2.529044e+01,2.529044e+01,1.261223e+01,0.000000e+00,0.000000e+00,0.000000e+00

Each column corresponds to the appropriate sensitivity measure as indicated above. Note that the standardized version
of the elementary effects are taken to be zero as the rescaled input file was not specified. The parameter is ordered
according to the design matrix file (the first column is the first parameter, etc.)

Sobol’ Sensitivity Indices

Sobol’ sensitivity indices in gsa_module are estimated by Monte Carlo procedure. The output of the model has to
be generated using a particular design called the Sobol’-Saltelli design. To estimate the main- and total-effect indices,
the number of model evaluations, are related to the number of Monte Carlo samples (N) and the number of input
dimensions (𝑘):

𝑛𝑟𝑢𝑛𝑠 = 𝑁 × (𝑘 + 2)

A set of 𝑘 + 2 design matrix files can be simultaneously generated using the following command:

> gsa_sobol_generate -n <number of samples> \
-d <number of dimensions> \
-ss <sampling scheme {srs, lhs, sobol}> \
-o <output filename header> \
-sep <the delimiter for the files> \
-int <include design matrices to estimate 2nd order> \
-s <seed number, for SRS and LHS only> \
-dirnum <direction number file, Sobol' only>

Brief explanation of these parameters can be shown by invoking:

1.2. User’s Guide 9

gsa-module Documentation, Release 0.9.0

> gsa_sobol_generate --help

The table below lists the complete options/flag in detail with their respective default values.

No. Short
Name

Long Name Type Re-
quired

Description De-
fault

1 -h –help flag No Show help message False
2 -n –num_samples inte-

ger
Yes The number of samples/design points None

3 -d –
num_dimensions

inte-
ger

Yes The number of dimensions None

4 -ss –
sampling_scheme

string No The method to generate sample {srs, lhs,
sobol}

srs

5 -o –
output_header

string No The output filename header see
below

6 -sep –delimiter string No The delimiter for the file {csv, tsv, txt} csv
7 -int –interaction flag No Flag to also generate matrices to estimate

2nd-order indices
False

8 -s –seed_number inte-
ger

No The random seed number (only for LHS and
Sobol)

None

9 -dirnum –
direction_numbers

string No The path to Sobol’ sequence generator None

10 -V –version flag No Show the program’s version number and exit False

Note that options number 8 is valid only for SRS- and LHS-based samples, while option number 9 is valid only
for Sobol-based samples. Without specifying the output filename header explicitly, the design matrices file will be
produced with the following naming convention:

> <method>_<num_samples>_<num_dimensions>_<matrix_ID>.cs

Example

As an example, by invoking the following command in the terminal:

> gsa_sobol_generate -n 20 -d 3

will produce 5 design matrix files with the following names:

.
|
+---
+--- srs_20_3_a.csv
+--- srs_20_3_ab1.csv
+--- srs_20_3_ab2.csv
+--- srs_20_3_ab3.csv
+--- srs_20_3_b.csv

Each file has the same structure as the design matrix file produced in General Purpose Design of Experiment.

Following the convention of Sobol’-Saltelli design, 2 design of experiments of the same size 𝑁 ×𝑘 are first generated.
These are the ones with matrix_ID a and b. Afterward each column of the matrix 𝐴 is replaced by a column from
matrix 𝐵. For example, matrix_ID ab1 corresponds to the matrix 𝐴 whose the first column has been replaced by
the first column of matrix 𝐵.

The model then has to be evaluated using the parameters values listed in each of these design matrix files.

10 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

Theory and Implementation

Sensitivity Analysis: Local vs. Global

An essential part of model development and assessment is properly describing and understanding the impact of model
parameter variations on the model prediction. Sensitivity analysis (SA) is an important methodological step in that
context1. SA is the process of investigating the role of input parameters in determining the model output2. It seeks to
quantify the importance of each model input parameter on the output.

Various classifications exist in the literature to categorize SA techniques34562. In the review by Ionescu-Bujor and
Cacuci45, SA techniques are classified with respect to their scope (local vs. global) and to their framework (deter-
ministic vs. statistical). In the review of SA methods by Iooss and Lemaître2, and the work by Saltelli et al.6 and
by Santner et al.7, the statistical framework is implicitly assumed deriving ideas from design of experiment, and the
classification is based on the parameter space of interest (local vs. global).

Local analysis is based on calculating the effect on the model output of small perturbations around a nominal parameter
value. Often the perturbation is done one parameter at a time thus approximating the first-order partial derivative of
the model output with respect to the perturbed parameter. The derivative can be computed through efficient adjoint
formulation89 capable of handling large number of parameters.

Besides being numerically efficient, sensitivity coefficients obtained from local deterministic sensitivity analysis have
the advantage of being intuitive in their interpretation, irrespective of the method employed10. The intuitiveness
stems from the aforementioned equivalence to the derivative of the output with respect to each parameter4 around a
specifically defined point (i.e., nominal parameter values). Thus the coefficients can be readily compared over different
modeled systems, independently of the range of parameters variations.

The global analysis, on the other hand, seeks to explore the input parameters space across its range of variation and
then quantify the input parameter importance based on a characterization of the resulting output response surface.
In global deterministic framework [4]_[9]_, the characterization is aimed at the identification of the system’s critical
points (e.g., maxima, minima, saddle points, etc.). In statistical global methods611, the characterization is aimed at
measuring the dispersion of the output based on variance1213, correlation14, or elementary effects15.

Due to the different characterizations, the global statistical framework can potentially give spurious results not com-
parable to the results from local method as there is no unique definition of sensitivity coefficient provided by different
global methods10. In some cases, different methods can give different and inconsistent parameters importance rank-

1 T.G. Trucano, L.P. Swiler, T. Igusa, W.L. Oberkampf, and M. Pilch, “Calibration, validation, and sensitivity analysis: What’s what,” Reliability
Engineering and System Safety, vol. 91, no. 10-11, pp. 1331-1357, 2006.

2 B. Iooss and P. Lemaitre, “A review on global sensitivity analysis methods,” in Uncertainty Management in Simulation-Optimization of
Complex Systems, pp. 101-122, Springer, 2015.

3 H.C. Frey and S.R. Patil, “Identification and Review of Sensitivity Analysis Methods,” Risk Analysis, vol. 22, no. 3, pp. 553–578, 2002.
4 M. Ionescu-Bujor and D.G. Cacuci, “A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems - I: Deterministic

Methods,” Nuclear Science and Engineering, vol. 147, pp. 189-203, 2004.
5 D.G. Cacuci and M. Ionescu-Bujor, “A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems - II: Statistical

Methods,” Nuclear Science and Engineering, vol. 147, pp. 204-217, 2004.
6 A. Saltelli et al., “Global Sensitivity Analysis. The Primer,” West Sussex, John Wiley & Sons, 2008.
7 T.J. Santner, B.J. Williams, and W.I. Notz, “The Design and Analysis of Computer Experiments,” Springer, 2003.
8 D.G. Cacuci, “Sensitivity and Uncertainty Analysis, Volume I: Theory,” Chapman & Hall/CRC, 2003.
9 D.G. Cacuci and M. Ionescu-Bujor, “Sensitivity and Uncertainty Analysis, Data Assimilation, and Predictive Best-Estimate Model Calibra-

tion,” Handbook of Nuclear Engineering, Springer, pp. 1913-2051, 2010.
10 S. Razavi and H.V. Gupta, “What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in

Earth and Environmental systems models,” Water Resources Research, vol. 51, pp. 3070-3092, 2015.
11 A. Saltelli et al., “Sensitivity Analysis in Practice: a Guide to Assessing Scientific Models,” West Sussex, John Wiley & Sons, 2004.
12 I. M. Sobol, “Global Sensitivity Analysis for nonlinear mathematical models and their Monte Carlo estimates,” Mathematics and Computers

in Simulation, vol. 55, no. 1-3, pp. 271-280, 2001.
13 R. Cukier, H. Levine, K. Shuler, “Nonlinear Sensitivity Analysis of Multiparameter Model Systems,” Journal of Computational Physics, vol.

26, pp. 1-42, 1978.
14 J.C. Helton, “Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal,” Reliability

Engineering & System Safety, vol. 42, pp. 327-367, 1993.
15 Max D. Morris, “Factorial Sampling Plans for Preliminary Computational Experiments”, Technometrics, Vol. 33, No. 2, pp. 161-174, 1991.

1.3. Theory and Implementation 11

gsa-module Documentation, Release 0.9.0

ing68. Furthermore, the result of the analysis can be highly dependent to the assumed input parameters probability
distribution and/or their range of variation59.

Yet, despite the aforementioned shortcomings, the global statistical framework has three particular attractive features
relevant to the present study. First, the statistical method for sensitivity analysis is non-intrusive in the sense that
minimal or no modification to the original code is required. In other words, the code can be taken as a black box and the
analysis is focused on the input/output relationship6 of the code. This is the case especially in comparison to adjoint-
based sensitivity1617 which is a highly efficient and accurate method applicable to a large number of parameters,
provided that the code is designed/modified for adjoint analysis.

Second, no a priori knowledge on the model structure (linearity, additivity, etc.) is required. Depending on the model
complexity and as the parameter variation range can be large, the linearity or additivity assumption might not hold.

Third and finally, the choice of a statistical framework for sensitivity analysis fits the Monte Carlo (MC)-based un-
certainty propagation method widely adopted in nuclear reactor evaluation models cite{Boyack1990, Nutt2004, Wal-
lis2007, Glaeser2008}. The method prescribes that the uncertain model input and parameters (modeled as random
variables) should be simultaneously and randomly perturbed across their range of variations. Multiple randomly
generated input values are then propagated through the code to quantify the dispersion of the prediction (e.g., peak
cladding temperature) which serves as a measure of the prediction reliability. Statistical global sensitivity analysis thus
complements the propagation step by addressing the follow-up question on the identification of the most important
parameters in driving the prediction uncertainty.

References

Designs of Experiment

This section is under preparation

Morris Screening Method

Screening methods are used to rank the importance of the model parameters using a relatively small number of model
executions1. However, they tend to simply give qualitative measures. That is, meaningful information resides in the
rank itself but not in the exact importance of the parameters with respect to the output. These methods are particularly
valuable in the early phase of a SA to identify the non-influential parameters of a model, which then could be safely
excluded from further detailed analysis. This exclusion step is important to reduce the size of the problem especially
if a more expensive method is to be applied at the next step. In this work, attention was paid to a particular screening
method proposed by Morris2.

Elementary Effects

Consider a model with 𝐾 parameters, where �⃗� = (𝑥1, 𝑥2, ..., 𝑥𝐾) is a vector of parameter value mapped onto the
unit hypercube and 𝑦(�⃗�) is the model output evaluated at point �⃗�. The elementary effect of parameter k is defined as
follow2 ,

𝐸𝐸𝑘 = 𝑌 (𝑥1,𝑥2,...,𝑥𝑘+Δ,...,𝑥𝐾)−𝑌 (𝑥1,𝑥2,...,𝑥𝐾)
Δ

Where ∆, the grid jump, is chosen such that �⃗� + ∆ is still in the specified domain of parameter space; ∆ is a value
in 1

𝑝−1 , . . . , 1 − 1
𝑝−1 where 𝑝 is the number of levels that partitions the model parameter space into a uniform grid

16 D.G. Cacuci and M. Ionescu-Bujor, “Adjoint Sensitivity Analysis of the RELAP5/MOD3.2 Two-Fluid Thermal-Hydraulic Code System - I:
Theory,” Nuclear Science and Engineering, vol. 136, pp. 59-84, 2000.

17 M. Ionescu-Bujor and D.G. Cacuci, “Adjoint Sensitivity Analysis of the RELAP5/MOD3.2 Two-Fluid Thermal-Hydraulic Code System - II:
Applications,” Nuclear Science and Engineering, vol. 136, pp. 85-121, 2000.

1 A. Saltelli et al., “Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models,” John Wiley & Sons, Ltd. United Kingdom (2004).
2 Max D. Morris, “Factorial Sampling Plans for Preliminary Computational Experiments”, Technometrics, Vol. 33, No. 2, pp. 161-174, 1991.

12 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

of points at which the model can be evaluated. The grid constructs a finite distribution of size 𝑝𝐾−1[𝑝 − ∆(𝑝 − 1)]
elementary effects per input parameters.

The key idea of the original Morris method is in initiating the model evaluations from various “nominal” points �⃗�
randomly selected over the grid and then gradually advancing one grid jump at a time between each model evaluation
(one at a time), along a different dimension of the parameter space selected randomly.

Statistics of Elementary Effects and Sensitivity Measure

Consider now that an 𝑛𝑅 number of elementary effects (or replicates) associated with the k’th parameter have been
sampled from the finite distribution of 𝐸𝐸𝑘. The statistical summary of 𝐸𝐸𝑘 from the sampled trajectories can be
calculated. The first is the arithmetic mean defined as,

𝜇𝑘 = 1
𝑛𝑅

Σ𝑛𝑅
𝑟=1𝐸𝐸𝑟

𝑘

The second statistical summary of interest is the standard deviation of the elementary effect associated with the k’th
parameter from all the trajectories,

𝜎𝑘 =
√︁

1
𝑛𝑅

Σ𝑛𝑅
𝑟=1(𝐸𝐸𝑟

𝑘 − 𝜇𝑘)2

The standard deviation gives an indication of the presence of nonlinearity and/or interactions between the k’th param-
eter and other parameters. As a change in a parameter value might have a changing sign on the output and thus result
in a cancelation effect (as can be the case for a nonmonotonic function), Campolongo et al.4 proposed the use of the
mean of the absolute elementary effect to circumvent this issue. It is defined as

𝜇*
𝑘 = 1

𝑛𝑅
Σ𝑛𝑅

𝑟=1|𝐸𝐸𝑟
𝑘|

The three aforementioned statistical summaries, when evaluated over a large number of trajectories 𝑛𝑅, can provide
global sensitivity measures of the importance of the k’th parameter. As indicated by Morris2 there are three possible
categories of parameter importance:

1. Parameters with noninfluential effects, i.e., the parameters that have relatively small values of both 𝜇𝑘 (or 𝜇*
𝑘)

and 𝜎𝑘. The small values of both indicate that the parameter has a negligible overall effect on the model output.

2. Parameters with linear and/or additive effects, i.e., the parameters that have a relatively large value of 𝜇𝑘 (or
𝜇*
𝑘) and relatively small value of 𝜎𝑘. The small value of 𝜎𝑘 and the large value of 𝜇𝑘 (or 𝜇*

𝑘) indicate that
the variation of elementary effects is small while the magnitude of the effect itself is consistently large for the
perturbations in the parameter space.

3. Parameters with nonlinear and/or interaction effects, i.e., the parameters that have a relatively small value of 𝜇𝑘

(or 𝜇*
𝑘) and a relatively large value of 𝜎𝑘. Opposite to the previous case, a small value of 𝜇𝑘 (or 𝜇*

𝑘) indicates that
the aggregate effect of perturbations is seemingly small while a large value of 𝜎𝑘 indicates that the variation of
the effect is large; the effect can be large or negligibly small depending on the other values of parameters at which
the model is evaluated. Such large variation is a symptom of nonlinear effects and/or parameter interaction.

Such classification makes parameter importance ranking and, in turn, screening of non-influential parameters possible.
However, the procedure is done rather qualitatively, and this is illustrated in the figure below, which depicts a typical
parameter classification derived from visual inspection of the elementary effect statistics on the 𝜎𝑘 versus 𝜇*

𝑘 plane.

4 F. Campolongo, A. Saltelli, and J. Cariboni, “From Screening to Quantitative Sensitivity Analysis. A Unified Approach,” Computer Physics
Communications, Vol. 192, pp. 978 - 988, 2011.

1.3. Theory and Implementation 13

gsa-module Documentation, Release 0.9.0

The notions of influential and non-influential parameters are based on the relative locations of those statistics in the
plane. Typically, the non-influential ones are clustered closer to the origin (relative to the more influential ones) with
a pronounced boundary such as depicted in the figure. Admittedly, if these statistics are spread uniformly across the
plane, the distinction would be more ambiguous (in this case, a more advanced classification such as the ones based
on clustering techniques might be helpful). Furthermore, for a parameter with large 𝜇𝑘 and 𝜎𝑘, the method cannot
distinguish between non-linearity effects from parameter interactions on the output.

Design of Experiment for Screening Analysis

There are two available experimental designs for to carry out the Morris screening method in gsa-module: the
trajectory design and radial OAT design.

Trajectory Design (Winding Stairs)

Trajectory design is the original Morris implementation of the design of experiment for screening design2. Essentially,
it is a randomized one-at-a-time design where each parameter is perturbed once, similar to that of the winding stairs
design proposed by Jansen et al.3. The most important feature of trajectory design is that it does not return to the
original base point after perturbation, but continue perturbing another dimension for the last perturbed point. This
ensures more efficient parameter space exploration although requires additional user-defined parameter called level4.

A trajectory design is defined by the number of trajectories (r), the number of levels (p), and the number of model
parameters (k). Each trajectories evaluate the model (k + 1) times so the economy of it in computing the elementary
effects statistics is r * (k+1) code runs.

A randomized trajectory design matrix is given by 𝑏* (2,5),

𝑏* = (𝑥* +
∆

2
× ((2 × 𝑏− 𝑗𝑘) × 𝑑* + 𝑗𝑘)) × 𝑝*

• 𝑏: a strictly lower triangular matrix of 1s, with dimension of (k + 1)-by-k

• 𝑥*: Random starting point in the parameter space, with dimension of (k + 1)-by-k - each row is the same.
3 Michiel J.W. Jansen, Walter A.H. Rossing, and Richard A. Daamen, “Monte Carlo Estimation of Uncertainty Contributions from Several

Independent Multivariate Sources,” in Predictability and Nonlinear Modelling in Natural Sciences and Economics, Dordrecht, Germany, Kluwer
Publishing, 1994, pp. 334 - 343.

5 A. Saltelli et al., “Global Sensitivity Analysis. The Primer,” West Sussex, John Wiley & Sons, 2008, pp. 114

14 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

• 𝑑*: a k-dimensional diagonal matrix which each element is either +1 or -1 with equal probability. This matrix
determines whether a parameter value will decrease or increase.

• 𝑝*: k-by-k random permutation matrix in which each row contains one element equal to 1, all others are 0,
and no two columns have 1s in the same position. This matrix determines the order in which parameters are
perturbed.

• 𝑗𝑘: (k + 1)-by-k matrix of 1s

• ∆: factorial increment in a diagonal matrix of (k + 1)-by-(k + 1)

The following is an example of a trajectory design in 2-dimensional input space with 4 trajectories (or replicates). The
input parameter space is uniformly divided into 6 levels. The filled circles are the random base (nominal) points from
which the random perturbation of the same size (i.e., the grid jump) is carried out one-at-a-time.

Radial Design

Radial design is a design for screening analysis proposed in4. Similar to trajectory design it is based on an extension
of one-at-a-time design. In the implementation of4, Sobol’ quasi-random sequence is used as the basis. Its main
advantage over the trajectory design is that the specification of input discretization level by user is no longer required.
Furthermore, the grid jump will also be varying from one input dimension to another, and from replicate to replicate
incorporating additional possible sources of variation in the method.

The procedure to generate radial design of r replicates is as follow:

1. Generate Sobol’ sequence with dimension (r+R, 2*k). R is the shift to avoid repetition in the sequence.
The value of R is recommended to be fixed at 4 following4, but see Choosing Shifting Value below for
additional comments.

2. The first half of the matrix up to the r-th row will serve as the base points: 𝑎𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . 𝑥𝑖,𝑘) ; 𝑖 =
1, . . . 𝑟. The second half of the matrix, starting from the R+1-th row will serve as the auxiliary points, from

1.3. Theory and Implementation 15

gsa-module Documentation, Release 0.9.0

which the perturbed states of the base point are created: 𝑏𝑖 = (𝑥𝑅+𝑖,𝑘+1, 𝑥𝑅+𝑖,𝑘+2, . . . 𝑥𝑅+𝑖,2𝑘) ; 𝑖 =
1, . . . 𝑟

3. For each row of the base points, create a set of perturbed states by substituting the value at each dimension
by the value from the auxiliary points at the same dimension, one at a time. For each base point, there
will be additional k perturbed points. For instance the 1st perturbed point of the i-th base point a_i is
𝑎*,1𝑖 = (𝑥𝑅+𝑖,𝑘+1, 𝑥𝑖,2, . . . 𝑥𝑖,𝑘), while the second is 𝑎*,2𝑖 = (𝑥𝑖,1, 𝑥𝑅+𝑖,𝑘+2, . . . 𝑥𝑖,𝑘). In general the j-th
perturbed point of the i-th base point is 𝑎*,𝑗𝑖 = (𝑥𝑖,1, . . . 𝑥𝑅+𝑖,𝑘+𝑗 , . . . 𝑥𝑖,𝑘).

4. A single elementary effect for each input dimension can be computed on the basis of function evaluations
at k+1 points: 1 base point and k perturbed points.

5. Repeat the process until the requested r replications have been constructed.

An illustration of radial OAT design generation based on Sobol’ sequence can be seen in the figure below.

As such the radial design has the same economy as the trajectory design, that is r * (k+1) computations for a k-
dimensional model with r replications. The computation of the elementary effect 𝐸𝐸𝑖, however, is slightly different
due to the fact that now the grid jump differs for each input dimension at each replication.

𝐸𝐸𝑖
𝑗 =

⃒⃒⃒⃒
⃒ 𝑦(𝑎*,𝑗𝑖) − 𝑦(𝑎𝑖)

𝑥𝑅+𝑖,𝑘+𝑗 − 𝑥𝑖,𝑗

⃒⃒⃒⃒
⃒

• 𝑦(𝑎*,𝑗𝑖): function value at j-th perturbed point of the i-th replicate.

• 𝑦(𝑎𝑖): function value at the base point of the i-th replicate.

16 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

• 𝑥𝑅+𝑖,𝑘+𝑗 : the perturbed input at dimension j of the i-th replicate.

• 𝑥𝑖,𝑗 : the base input at dimension j of the i-th replicate.

As can be seen the average over many replications of the elementary effect defined above will automatically yield 𝜇*.

The following is an example of a radial design in 2-dimensional input space with 4 base points (filled circles), located
not necessarily in a specific grid. The perturbations are carried out from these base points (crosses). The size of the
perturbation differs from input dimension to input dimension and from replicate to replicate.

Choosing Shifting Value

As mentioned the recommendation given by4 for the value of R is 4. This value reflects the fact that the a sample of
Sobol’ sequence across dimension tends to repeat values, especially in the first several rows. For example, the first two
Sobol’ samples used here have the values of 0.0 and 0.5 in all of the dimensions. If such repetition in value happened
one or more rows in the ∆ matrix will be zero (so is the ∆𝑌 vector), and cause the system of linear equation to be
under-determined.

But except for the obvious repetitions of values in different dimensions in the first several samples any other repetitions
cannot be excluded to reoccur down the line of samples. As such the value of R has to be picked carefully and from our
experience this value is highly dependent on the number of samples and/or dimension. Yet, the of the main points of
using radial design in the first place was to avoid specifying the number of levels p. Choosing R for different number
of samples and/or dimensions definitely defeat the purpose of using radial design.

A pragmatic solution for this problem, which is adopted here, is to check whether a given auxiliary point has the same
value with the base point in one or more dimension, every time a block of one-at-a-time design is generated. If it has
then use the next auxiliary point instead. Finally, to replace the missing auxiliary point, an additional point is generated
using the Sobol’ sequence.

1.3. Theory and Implementation 17

gsa-module Documentation, Release 0.9.0

Miscellaneous Topics

Computation of the Elementary Effect

In gsa-module, computing the elementary effect for each replications is achieved by using matrix algebra, which
is similar to the implementation in6. There is slight difference between the computation of elementary effects for
trajectory design and radial design. The following figure illustrate the computation of all the elementary effects of a
single replicate for 3-parameter model using trajectory design with 4 levels.

The following figure illustrate the same computation of a single replicate for 3-parameter model using radial design
(no number of levels specification needed).

6 Jon D. Herman, SALib [Source Code], March 2014, https://github.com/jdherman/SALib

18 Chapter 1. gsa-module Documentation

https://github.com/jdherman/SALib

gsa-module Documentation, Release 0.9.0

The statistics of the elementary effects are eventually computed after the same procedure are repeated for many repli-
cations.

Presenting the Results of the Analysis

Standardized Elementary Effect

In the original implementation of Morris method2, the input parameter is normalized, that is all the parameters values
lie between 0, 1. Furthermore, following the suggestion by Saltelli et al.5, the grid jump size is kept constant for a
given number of levels for all parameters. As such, the method is prone to misrank the important parameters if there
is a vast difference in the original scale of various parameters (e.g., [0,1] in one parameter, [10,100] in another, etc.).
The normalized scale of [0,1] would then be biased to the parameter who has the largest scale of variation. To compare
the elementary effect in a common ground taking into account the original scale of variation for each parameter, it is
advised in7 to scale the elementary effect with the standard deviation of the input 𝜎𝑥𝑖

and of the output 𝜎𝑦 ,

𝑆𝐸𝐸𝑖 =
𝜎𝑥𝑖

𝜎𝑦

∆𝑦

∆𝑥𝑖

In gsa-module, the standardized elementary effect is automatically computed if the rescaled input parameters values
are specified. It is used to compute the standard deviation for each of the parameters taking into account the original
scale of variation of each.

7 G. Sin and K. V. Gernaey, “Improving the Morris Method for Sensitivity Analysis by Scaling the Elementary Effects,” in Proc. 19th European
Symposium on Computer Aided Process Engineering, 2009

1.3. Theory and Implementation 19

gsa-module Documentation, Release 0.9.0

Optimized Trajectory Design

References

Sobol’ Sensitivity Indices

Variance-based methods for global sensitivity analysis use variance as the basis to define a measure of input parameter
influence on the overall output variation1. In a statistical framework of sensitivity and uncertainty analysis, this choice
is natural because variance (or standard deviation, a related concept) is often used as a measure of dispersion or
variability in the model prediction2. A measure of such dispersion, in turn, indicates the precision of the prediction
due to variations in the input parameters.

This section of the documentation discusses the origin of Sobol’ sensitivity indices and the method to estimate them
by Monte Carlo simulation.

High-Dimensional Model Representation

Consider once more a mathematical model 𝑓 : x ∈ [0, 1]𝐷 ↦→ 𝑦 = 𝑓(x) ∈ R. The high-dimensional model
representation (HDMR) of 𝑓(x) is a linear combination of functions with increasing dimensionality3,

𝑓(x) = 𝑓𝑜 +
∑︁

𝑑=1,2,...𝐷

𝑓𝑑(𝑥𝑑) +
∑︁

1≤𝑑<𝑒≤𝐷

𝑓𝑑,𝑒(𝑥𝑑, 𝑥𝑒) + · · · + 𝑓1,2,··· ,𝐷(𝑥1, 𝑥2, · · · , 𝑥𝐷) (1.1)

where 𝑓𝑜 is a constant.

The representation in the above equation is unique given the following condition4:∫︁ 1

0

𝑓𝑖1,𝑖2,···𝑖𝑠(𝑥𝑖1, 𝑥𝑖2, · · · , 𝑥𝑖𝑠)𝑑𝑥𝑖𝑚 = 0

for 𝑚 = 1, 2, · · · , 𝑠; 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑠 ≤ 𝐷;

and 𝑠 ∈ 1, · · · , 𝐷

(1.2)

Assume now that X is a random vector of independent and uniform random variables over a unit hypercube {Ω =
x|0 ≤ 𝑥𝑖 ≤ 1; 𝑖 = 1, · · ·𝐷} such that

𝑌 = 𝑓(X)

where 𝑌 is a random variable, resulting from the transformation of random vector X by function 𝑓 . Using Eq. (1.2)
to express each term in Eq. (1.1), it follows that

𝑓𝑜 = E[𝑌]

𝑓𝑑(𝑥𝑑) = E∼𝑑[𝑌 |𝑋𝑑] − E[𝑌]

𝑓𝑑,𝑒(𝑥𝑑, 𝑥𝑒) = E∼𝑑,𝑒[𝑌 |𝑋𝑑, 𝑋𝑒] − E∼𝑑[𝑌 |𝑋𝑑] − E∼𝑒[𝑌 |𝑋𝑒] − E[𝑌]

(1.3)

The same follows for higher-order terms in the decomposition. In Eq. (1.3), E∼𝑒[𝑌 |𝑋𝑒] corresponds to the conditional
expectation operator, and the ∼ ∘ in the subscript means that the integration over the parameter space is carried out
over all parameters except the specified parameter in the subscript. For instance, E∼1[𝑌 |𝑋1] refers to the conditional

1 Dan G. Cacuci and Mihaela Ionescu-Bujor, “A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems - II:
Statistical Methods,” Nuclear Science and Engineering, vol. 147, no. 3, pp. 204-217, 2004.

2 A. Saltelli et al., “Global Sensitivity Analysis. The Primer,” West Sussex, John Wiley & Sons, 2008.
3 Genyuan Li, Carey Rosenthal, and Herschel Rabitz, “High Dimensional Model Representations,” The Journal of Physical Chemistry A, vol.

105, no. 33, pp. 7765-7777, 2001.
4 I. M. Sobol, “Global Sensitivity Analysis for nonlinear mathematical models and their Monte Carlo estimates,” Mathematics and Computers

in Simulation, vol. 55, no. 1-3, pp. 271-280, 2001.

20 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

mean of 𝑌 given 𝑋1, and the integration is carried out for all possible values of parameters in x except 𝑥1. Note that
because 𝑋1 is a random variable, the expectation conditioned on it is also a random variable.

Assuming that 𝑓 is a square integrable function, applying the variance operator on 𝑌 results in

V[𝑌] =

𝐷∑︁
𝑑=1

V[𝑓𝑑(𝑥𝐷)] +
∑︁

1≤𝑑<𝑒≤𝐷

V[𝑓𝑑,𝑒(𝑥𝑑, 𝑥𝑒)] + · · · + V[𝑓1,2,··· ,𝐷(𝑥1, 𝑥2, · · · , 𝑥𝐷)] (1.4)

Sobol’ Sensitivity Indices

Division by V[𝑌] aptly normalizes Eq. (1.4)

1 =

𝐷∑︁
𝑑=1

𝑆𝑑 +
∑︁

1≤𝑑<𝑒≤𝐷

𝑆𝑑,𝑒 + · · · + 𝑆1,2,··· ,𝐷

The Sobol’ main-effect sensitivity index 𝑆𝑑 is defined as,

𝑆𝑑 =
V𝑑[E∼𝑑[𝑌 |𝑋𝑑]]

V[𝑌]
(1.5)

The numerator is the variance of the conditional expectation, and the index is a global sensitivity measure interpreted
as the amount of variance reduction in the model output if the parameter 𝑋𝑑 is fixed (i.e., its variance is reduced to
zero).

A closely related sensitivity index proposed by Homma and Saltelli5 is the Sobol’ total-effect index defined as,

𝑆𝑇𝑑 =
E∼𝑑[V𝑑[𝑌 |X∼𝑑]]

V[𝑌]
(1.6)

The index, also a global sensitivity measure, can be interpreted as the amount of variance left in the output if the values
of all input parameters, except 𝑥𝑑, can be fixed.

These two sensitivity measures can be related to the objectives of global SA for model assessment as proposed by
Saltelli et al.26. The main-effect index is relevant to parameter prioritization in the context of identifying the most
influential parameter since fixing a parameter with the highest index value would, on average, lead to the greatest
reduction in the output variation.

The total-effect index, on the other hand, is relevant to parameter fixing (or screening) in the context of identifying the
least influential set of parameters since fixing any parameter that has a very small total-effect index value would not
lead to significant reduction in the output variation. The use of total-effect index to identify which parameter can be
fixed or excluded is similar to that of the elementary effect statistics of the Morris method, albeit more exact but also
more computationally expensive to compute. And finally, the difference between the two indices of a given parameter
(Eqs. (1.6) and (1.5)) is used to quantify the amount of all interactions involving that parameters in the model output.

The Sobol’-Saltelli Method

Monte Carlo Integration

In principle, the estimation of the Sobol’ indices defined by Eqs. (1.5) and (1.6) can be directly carried out using Monte
Carlo (MC) simulation. The most straightforward, though rather naive, implementation of MC simulation to conduct
the estimation is using two nested loops for the computation of the conditional variance and expectation appeared in
both equations.

5 Toshimitsu Homma and Andrea Saltelli, “Importance Measures in Global Sensitivity Analysis of Nonlinear Models,” Reliability Engineering
and System Safety, vol. 52, no. 1, pp. 1-17, 1996.

6 A. Saltelli et al., “Sensitivity Analysis in Practice: a Guide to Assessing Scientific Models,” West Sussex, John Wiley & Sons, 2004.

1.3. Theory and Implementation 21

gsa-module Documentation, Release 0.9.0

In the estimation of the main-effect index of parameter 𝑥𝑑, for instance, the outer loop samples values of 𝑋𝑑 while
the inner loop samples values of X∼𝑑 (anything else other than 𝑥𝑑). These samples, in turn, are used to evaluate
the model output. In the inner loop, the mean of the model output (for a given value of 𝑋𝑑 but over many values of
X∼𝑑) is taken. Afterward, in the outer loop, the variance of the model output (over many values of 𝑋𝑑) is taken. This
approach can easily become prohibitively expensive as the nested structure requires two 𝑁2 model evaluations per
input dimension for either the main-effect and total-effect indices, while 𝑁 (the size of MC samples) are typically in
the range of 102 − 104 for a reliable estimate.

Sobol’4 and Saltelli7 proposed an alternative approach that circumvent the nested structure of MC simulation to esti-
mate the indices. The formulation starts by expressing the expectation and variance operators in their integral form.
As the following formulation is defined on a unit hypercube of 𝐷-dimension parameter space where each parameter
is a uniform and independent random variable, explicit writing of the distribution within the integration as well as the
integration range are excluded for conciseness.

First, the variance operator shown in the numerator of Eq. (1.5) is written as

V𝑑[E∼𝑑[𝑌 |𝑋𝑑]] = E𝑑[E2
∼𝑑[𝑌 |𝑋𝑑]] − (E𝑑[E∼𝑑[𝑌 |𝑋𝑑]])

2

=

∫︁
E2
∼𝑑[𝑌 |𝑋𝑑]𝑑𝑥𝑑 −

(︂∫︁
E∼𝑑[𝑌 |𝑋𝑑]𝑑𝑥𝑑

)︂2 (1.7)

The notation E∼∘[∘|∘] was already explained in the previous subsection, while E∘[∘] corresponds to the marginal
expectation operator where the integration is carried out over the range of parameters specified in the subscript.

Next, consider the term conditional expectation shown in Eq. (1.7), which per definition reads

E∼𝑑[𝑌 |𝑋𝑑] =

∫︁
𝑓(x∼𝑑, 𝑥𝑑)𝑑x∼𝑑 (1.8)

Note that x = {x∼𝑑, 𝑥𝑑}.

Following the first term of Eq. (1.7), by squaring Eq. (1.8) and by defining a dummy vector variable x′
∼𝑑, the product

of the two integrals can be written in terms of a single multiple integrals

E2
∼𝑑[𝑌 |𝑋𝑑] =

∫︁
𝑓(x∼𝑑, 𝑥𝑑)𝑑x∼𝑑 ·

∫︁
𝑓(x∼𝑑, 𝑥𝑑)𝑑x∼𝑑

=

∫︁ ∫︁
𝑓(x′

∼𝑑, 𝑥𝑑)𝑓(x∼𝑑, 𝑥𝑑)𝑑x′
∼𝑑𝑑x∼𝑑

(1.9)

Returning to the full definition of variance of conditional expectation in Eq. (1.7),

V𝑑[E∼𝑑[𝑌 |𝑋𝑑]] =

∫︁ ∫︁
𝑓(x′

∼𝑑, 𝑥𝑑)𝑓(x∼𝑑, 𝑥𝑑)𝑑x′
∼𝑑𝑑x∼𝑑

−
(︂∫︁

𝑓(x)𝑑x

)︂2 (1.10)

Finally, the main-effect sensitivity index can be written as an integral as follows:

𝑆𝑑 =
V𝑑[E∼𝑑[𝑌 |𝑋𝑑]]

V[𝑌]

=

∫︀ ∫︀
𝑓(x′

∼𝑑, 𝑥𝑑)𝑓(x∼𝑑, 𝑥𝑑)𝑑x′
∼𝑑𝑑x−

(︀∫︀
𝑓(x)𝑑x

)︀2∫︀
𝑓(x)2𝑑x−

(︀∫︀
𝑓(x)𝑑x

)︀2 (1.11)

The integral form given above dispenses with the nested structure of multiple integrals in the original definition of
main-effect index. The multidimensional integration is over 2 × 𝐷 − 1 dimensions and it is the basis of estimating

7 A. Saltelli, “Making best use of model evaluations to compute sensitivity indices,” Computer Physics Communications, vol. 145, no. 2, pp.
280-297, 2002.

22 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

sensitivity index using MC simulation in this implementation, hereinafter referred to as the Sobol’-Saltelli method.
The same procedure applies to derive the total effect-index which yields,

𝑆𝑇𝑑 =
E∼𝑑[V𝑑[𝑌 |X∼𝑑]]

V[𝑌]

=

∫︀
𝑓2(x)𝑑x−

∫︀ ∫︀
𝑓(x∼𝑑, 𝑥

′
𝑑)𝑓(x∼𝑑, 𝑥𝑑)𝑑x′

𝑑𝑑x∫︀
𝑓(x)2𝑑x−

(︀∫︀
𝑓(x)𝑑x

)︀2 (1.12)

For 𝑁 number of MC samples and 𝐷 number of model parameters, MC simulation procedure to estimate the sensitivity
indices follows the sampling and resampling approach adopted in4,5,7 described in the following.

Procedures

First, generate two 𝑁 × 𝐷 independent random samples from a uniform independent distribution in 𝐷-dimension,
[0, 1]𝐷:

𝐴 =

⎛⎜⎝𝑎11 · · · 𝑎1𝐷
...

. . .
...

𝑎𝑁1 · · · 𝑎𝑁𝐷

⎞⎟⎠ ; 𝐵 =

⎛⎜⎝ 𝑏11 · · · 𝑏1𝐷
...

. . .
...

𝑏𝑁1 · · · 𝑏𝑁𝐷

⎞⎟⎠ (1.13)

Second, construct 𝐷 additional design of experiment matrices where each matrix is matrix 𝐴 with the 𝑑-th column
substituted by the 𝑑-th column of matrix 𝐵:

𝐴1
𝐵 =

⎛⎜⎝ 𝑏11 · · · 𝑎1𝐷
...

. . .
...

𝑏𝑁1 · · · 𝑎𝑁𝐷

⎞⎟⎠
𝐴𝑑

𝐵 =

⎛⎜⎝𝑎11 · · · 𝑏1𝑑 · · · 𝑎1𝐷
... · · ·

... · · ·
...

𝑎𝑁1 · · · 𝑏𝑁𝑑 · · · 𝑎𝑁𝐷

⎞⎟⎠
𝐴𝐷

𝐵 =

⎛⎜⎝𝑎11 · · · 𝑏1𝐷
...

. . .
...

𝑎𝑁1 · · · 𝑏𝑁𝐷

⎞⎟⎠
Third, rescale each element in the matrices of samples to the actual values of model parameters according to their
actual range of variation through iso-probabilistic transformation.

Fourth, evaluate the model multiple times using input vectors that correspond to each row of 𝐴, 𝐵, and all the 𝐴𝑑
𝐵 .

Fifth and finally, extract the quantities of interest (QoIs) from all the outputs and recast them as vectors. The main-
effect and total-effect indices are then estimated using the estimators described below.

Monte Carlo Estimators

For the main-effect sensitivity index, two estimators are considered. One is proposed by Saltelli7, and the other, as an
alternative, is proposed by Janon et al.8. The latter proved to be more efficient, especially for a large variation around
a parameter estimate8.

The first term in the numerator of Eq. (1.11) is the same for both estimators and is given by∫︁ ∫︁
𝑓(x′

∼𝑑, 𝑥𝑑)𝑓(x∼𝑑, 𝑥𝑑)𝑑x′
∼𝑑𝑑x∼𝑑 ≈ 1

𝑁

𝑁∑︁
𝑛=1

𝑓(𝐵)𝑛 · 𝑓(𝐴𝑑
𝐵)𝑛 (1.14)

8 A. Janon et al., “Asymptotic normality and efficiency of two Sobol’ index estimators,” ESAIM: Probability and Statistics, vol. 18, pp. 342-364,
2014.

1.3. Theory and Implementation 23

gsa-module Documentation, Release 0.9.0

where the subscript 𝑛 corresponds to the row of the sampled model parameters such that 𝑓(𝐵)𝑛 is the model output
evaluated using inputs taken from the 𝑛-th row of matrix 𝐵 and 𝑓(𝐴𝑑

𝐵)𝑛 is the model output evaluated using inputs
taken from the 𝑛-th row of matrix 𝐴𝐾

𝐵 . The MC estimator for the second term in the numerator and for the denominator
differ for the two considered estimators given in Table below.

Estimator E2[𝑌] =
(︀∫︀

𝑓𝑑x
)︀2 V[𝑌] =

∫︀
𝑓2𝑑x−

(︀∫︀
𝑓𝑑x

)︀2
Saltelli7 1

𝑁

∑︀
𝑓(𝐴)𝑛 · 𝑓(𝐵)𝑛

1
𝑁

∑︀
𝑓(𝐴)2𝑛 −

(︀
1
𝑁

∑︀
𝑓(𝐴)𝑛

)︀2
Janon et al.8

(︁
1
𝑁

∑︀ 𝑓(𝐵)𝑛+𝑓(𝐴𝑑
𝐵)𝑛

2

)︁2
1
𝑁

∑︀ 𝑓(𝐵)2𝑛+𝑓(𝐴𝑑
𝐵)2𝑛

2 −
(︁

1
𝑁

∑︀ 𝑓(𝐵)2𝑛+𝑓(𝐴𝑑
𝐵)2𝑛

2

)︁2

The general formula of the main-effect sensitivity index estimator is

̂︀𝑆𝑑 =
1
𝑁

∑︀𝑁
𝑛=1 𝑓(𝐵)𝑛 · 𝑓(𝐴𝑑

𝐵)𝑛 − E2[𝑌]

V[𝑌]
(1.15)

where and E2[𝑌] and V[𝑌] are as prescribed in the table above.

The general formula of the total-effect sensitivity indices follows the definition of it as given in (1.6). The denominator
E∼𝑑[V𝑑[𝑌 |X∼𝑑]] is estimated using the estimators listed in the table below, while V[𝑌] is estimated by the Saltelli et
al. estimator in table above.

Estimator E∼𝑑[V𝑑[𝑌 |X∼𝑑]]
Sobol-Homma5 1

𝑁

∑︀
𝑓2(𝐴)𝑛 · 𝑓(𝐴)𝑛𝑓(𝐴𝐵𝑑)𝑛

Jansen10 1
2𝑁

∑︀(︀
𝑓(𝐴)𝑛 − 𝑓(𝐴𝐵𝑑)𝑛

)︀2
The computational cost associated with the estimation of all the main-effect and total-effect indices is 𝑁 × (𝐷 + 2)
code runs, where 𝑁 is the number of MC samples and 𝐷 is the number of parameters. Compare this to the cost of
brute force Monte Carlo of 2 ×𝐷 ×𝑁2 code runs to estimate all the main-effect and total-effect sensitivity indices.

As an additional comparison, the cost for Morris method to compute the statistics of elementary effect is 𝑁𝑅×(𝐷+1)
code runs, where :math‘N_R‘ is the number of OAT design replications. In either methods, the number of samples
:math‘N‘ (in the case of the Sobol’-Saltelli method) and replications 𝑁𝑅 (in the case of the Morris method) determines
the precision of the estimates. A larger number of samples (and replications) increases the precision. Note, however,
that in practice the typical number of Morris replications is between 101−10210, while the number of gls{mc} samples
for the Sobol’ indices estimation amounts to 102 − 1044.

References

Developer’s Guide

Guidelines for Contributing

This page is still under preparation

Installation Instructions for Developer

This page is still under preparation

Modifying Code

This page is still under preparation
10 F. Campolongo, A. Saltelli, and J. Cariboni, “From Screening to Quantitative Sensitivity Analysis. A Unified Approach,” Computer Physic

Communications, vol. 182, no. 4, pp. 978-988, 2011.

24 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

About gsa-module

Contributors

gsa_module is written and currently maintained by Damar Wicaksono <damar.wicaksono@gmail.com>

Other co-maintainers:

• Gregory Perret <greg.perret@psi.ch>

License

gsa-module is licensed to you under the MIT License

Copyright (c) [2016] [Damar Wicaksono]

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Funding

gsa_module is developed to support sensitivity analysis of model output, particularly from (though not stricted to)
thermal-hydraulics system code, under a doctoral research project funded by the Swiss Federal Institute of Technology,
in Lausanne; carried out at the Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institut, in
Villigen.

Gallery of Applications to Test Functions

Ishigami Function

Ishigami function is a 3-dimensional function introduced by Ishigami and Homma1,

𝑓(x) = sin𝑥1 + 𝑎 sin2 𝑥2 + 𝑏𝑥4
3 sin𝑥1

𝑥𝑑 ∼ 𝑈 [−𝜋, 𝜋]; 𝑑 = 1, 2, 3

the parameters a and b can be adjusted but have default values of 7 and 0.1, respectively.

1 T. Homma and A. Saltelli, “Importance measures in global sensitivity analysis of nonlinear models,” Reliability Engineering and System
Safety, vol. 52, pp. 1-17, 1996.

1.5. About gsa-module 25

mailto:damar.wicaksono@gmail.com
mailto:greg.perret@psi.ch

gsa-module Documentation, Release 0.9.0

Analytical Solution

The analytical formulas for the variance terms of the Ishigami function for X𝑑 ∼ 𝒰 [−𝜋, 𝜋]; 𝑑 = 1, 2, 3 and the given
parameter 𝑎 and 𝑏 are the following

Marginal Variance

V[𝑌] =
𝑎2

8
+

𝑏𝜋4

5
+

𝑏2𝜋8

18
+

1

2

Top Marginal Variance

𝑉1 = V1[E2,3[𝑌 |𝑋1]]

=
1

2

(︂
1 +

𝑏𝜋4

5

)︂2

𝑉2 = V2[E1,3[𝑌 |𝑋2]]

=
𝑎2

8
𝑉3 = V3[E1,2[𝑌 |𝑋3]]

= 0

Bottom Marginal Variance

𝑉 𝑇1 = E2,3[V1[𝑌 |X2,X3]] =
1

2

(︂
1 +

𝑏𝜋4

5

)︂2

+
8𝑏2𝜋8

225

𝑉 𝑇2 = E1,3[V2[𝑌 |X1,X3]] =
𝑎2

8

𝑉 𝑇3 = E1,2[V3[𝑌 |X1,X2]] =
8𝑏2𝜋8

225

The analytical main- and total-effect sensitivity indices can be computed using their respective definition in relation to
the variance terms given above.

Morris Screening Results

The function was used to test the implementation of the Morris screening and most precisely that of the two designs
of experiment: the trajectory and radial designs (see Morris Screening Method).

Trajectory sampling design

The trajectory effect is the original design proposed by Morris. The design matrix was generated with:

• number of trajectories (r) equal to 10, 100 and 1000 times the number of parameter (k=3),

• and levels (p) equal to 4, 8, 12 and 20.

Each generated design was used to evaluate the Morris modified function and the associated elementary effects were
calculated.

The following figures show the 𝜎 vs. 𝜇* plot for the four parameters of the Ishigami function for different sets of r
and p values. Each set of (r, p) value was repeated 1000 times and a histogram of the results is presented for each
parameter in the figures.

26 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

1.6. Gallery of Applications to Test Functions 27

gsa-module Documentation, Release 0.9.0

28 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

1.6. Gallery of Applications to Test Functions 29

gsa-module Documentation, Release 0.9.0

Countrary to the Modified Morris Function, the value of the elementary design with a level p=4 is quite different that
the values obtained with the other level values. This remains true for a very large number of trajectories (i.e. 3000).
The predictions with a level of 8 or higher are consistent.

We also observe that a number of trajectories equals to 10 times the number of parameter (i.e. 30) is not sufficient to
entirely classified the parameters (as the histograms of parameters 0 and 2 overlap). A minimum number of trajectories
of about 100 times the number of parameter is necessary for the Ishigami function to separate the parameters.

30 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

Radial sampling design

The radial sampling design has been proposed by Campagnolo et al. and is described in more details at Morris
Screening Method. Only a number of trajectories, here called blocks to differentiate from the previous design, is
required. For testing purposes we investigated, as previously, numbers of blocks (r) equal to 10, 100 and 1000 times
the number of parameter (k=3).

Each generated design was used to evaluate the Ishigami function and the associated elementary effects were calcu-
lated.

The following figures show the 𝜎 vs. 𝜇* plot for the three parameters of the Ishigami function and for the three sets
of r values. Countrary to the trajectory design, the radial design uses the Sobol generator, which is deterministic. As
such no repetitions were performed to investigate the dispersion of the (𝜎, 𝜇*) values.

1.6. Gallery of Applications to Test Functions 31

gsa-module Documentation, Release 0.9.0

The values are found to be quite stable, even for a block value of r=30. They differ, however, significantly from that
obtained with the trajectory design (Section Trajectory sampling design).

The exact value for the elementary effects were not found in litterature. However, the sensitivity indices are 𝑆1 =

32 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

0.3138, 𝑆2 = 0.4424 and 𝑆3 = 01. Because 𝜇* and S quantify the same information, we expect them to be ordered in
the same way. Therefore the results obtained with the radial sampling design appear preferable.

Sobol Sensitivity Indices Results

The function was used to test the implementation of the Sobol sensitivity indices. The main-effect (first order) and
total-effect (total order) sensitivity indices are both computed. Both the sampling scheme type and the estimator for
the sensitivity indices were tested. The tested sampling schemes are simple random sampling (srs), latin-hypercube
sampling (lhs) and the sobol sampling (sobol). The tested estimators are janon and saltelli for the main-effect SI and
jansen and sobol for the total-effect SI (see Sobol’ Sensitivity Indices).

The following figure shows the convergence of the main-effect SI (first order) with the number of samples for the first
parameter (param0) of the Ishigami’s function. Each panel shows the janon and saltelli estimators, with their 1 − 𝜎
uncertainties, for a given sampling scheme. The dotted red line is the analytical solution (i.e. the target value).

A similar figure is shown below for the total-effect SI (tot-order) for the jansen and sobol estimators.

1.6. Gallery of Applications to Test Functions 33

gsa-module Documentation, Release 0.9.0

All estimators for the main- and total-effect SI converge to the analytical solution with a sufficient number of samples
(i.e. 104 in the worst case). As expected the sobol and lhs sampling schemes for the design matrix are clearly
superior to the simple random scheme (srs) as the calculated main- and total-effect SI converge faster and with a
lower uncertainies; the sobol sampling scheme appears to be only slightly better than lhs. Finally, comparing the
estimators the janon and jansen estimators show slightly better properties than the saltelli and sobol estimators. These
conclusions remain the same for all input parameter of the Ishigami’s function.

From a practical point of view, we advise to use the sobol or lhs sampling scheme with at least 1000 points. The
estimator does not play a significant role.

References

Modified Morris Function

A modified version of test function appeared in Morris’ original article1 is used as a test function in this module.
Instead of 20-dimensional function, the modified version is only 4-dimensional and truncated as follows,

𝑓(𝑥) =

4∑︁
𝑖=1

𝛽𝑖𝑥𝑖 +

4∑︁
𝑖≤𝑗

𝛽𝑖,𝑗𝑥𝑖𝑥𝑗

𝛽𝑖 = [0.05, 0.59, 10.0, 0.21]

1 Max D. Morris, “Factorial Sampling Plan for Preliminary Computational Experiments,” Technometrics, vol. 33, no. 2, pp. 161 - 174, 1991.

34 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

𝛽𝑖,𝑗 =

⎡⎢⎢⎣
0 80 60 40
0 30 0.73 0.18
0 0 0.64 0.93
0 0 0.0 0.06

⎤⎥⎥⎦
The function accepts inputs 𝑥 the component of which are :math: 0 < x_i leq 1.

Morris Screening Results

The function was used to test the implementation of the Morris screening and most precisely that of the two designs
of experiment: the trajectory and radial designs Morris Screening Method.

Trajectory sampling design

The trajectory effect is the original design proposed by Morris. The design matrix was generated with:

• number of trajectories (r) equal to 10, 100 and 1000 times the number of parameter (k=4),

• and levels (p) equal to 4, 8, 12 and 20.

Each generated design was used to evaluate the Morris modified function and the associated elementary effects were
calculated.

The following figures show the 𝜎 vs. 𝜇* plot for the four parameters of the Morris modified function for different sets
of r and p values. Each set of (r, p) value was repeated 1000 times and a histogram of the results is presented for each
parameter in the figures.

1.6. Gallery of Applications to Test Functions 35

gsa-module Documentation, Release 0.9.0

The elementary effects of the function are similar for all combinations of r and p values and consistent with the

36 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

expected values. As expected, the histogram dispersion is reduced when the number of trajectories increases. The
classification of the parameters is stable already for an number of trajectories equals to 10 times the nubmer of dimen-
sion.

Radial sampling design

The radial sampling design has been proposed by Campagnolo et al. and is described in more details at Morris
Screening Method. Only a number of trajectories, here called blocks to differentiate from the previous design, is
required. For testing purposes we investigated, as previously, numbers of blocks (r) equal to 10, 100 and 1000 times
the number of parameter (k=4).

Each generated design was used to evaluate the Morris modified function and the associated elementary effects were
calculated.

The following figures show the 𝜎 vs. 𝜇* plot for the four parameters of the Morris modified function and for the three
sets of r values. Countrary to the trajectory design, the radial design uses the Sobol generator, which is deterministic.
As such no repetitions were performed to investigate the dispersion of the (𝜎, 𝜇*) values.

1.6. Gallery of Applications to Test Functions 37

gsa-module Documentation, Release 0.9.0

The values are found to be quite stable, even for a block value of r=40 and are in agreement with that obtained with
the trajectory design (Section Trajectory sampling design). A better quanitification of the convergence to the reference
values of 𝜎, 𝜇* is shown in the table below. The only possible exception is for 𝜎 of parameter 1 (𝑥2).

38 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

Parameter Statistics Ref r=40 r=400 r=4000
Param0 𝜇* 90.05 87.11 89.97 90.02
Param0 𝜎 31.08 31.99 31.05 31.09
Param1 𝜇* 71.05 69.36 71.11 71.06
Param1 𝜎 28.86 24.10 27.09 26.18
Param2 𝜇* 41.47 40.50 41.38 41.47
Param2 𝜎 17.75 17.31 17.33 17.33
Param3 𝜇* 20.83 20.19 20.76 20.82
Param3 𝜎 11.54 11.53 11.55 11.55

References

Sobol-𝐺* Function

Sobol-𝐺* is a modified version of Sobol-G function proposed in1 initially to avoid excluding singular value at x =
{0.5}. The function reads,

𝐺*(x,a,𝛼, 𝛿) =

𝐷∏︁
𝑑=1

𝑔*𝑖

𝑔*𝑑 =
(1 + 𝛼𝑑) · |2(𝑥𝑑 + 𝛿𝑑 − 𝐼[𝑥𝑑 + 𝛿𝑑]) − 1|𝛼𝑑 + 𝑎𝑑

1 + 𝑎𝑑

where x ∈ [0, 1]𝐷; 𝑎𝑑 ∈ R+ determines the first-order importance of parameter-𝑑; 𝛿 ∈ [0, 1]𝐷 is the shift parameter;
𝛼 ∈ R𝐷+ is the curvature parameter; and 𝐼[∘] is the integer part of the number.

The parameters a and 𝛼 can be adjusted. The particular test function used in this module is 𝐺*
2 (see pp. 265 in1) where

𝛼𝑑 = 1; 𝑑 = 1, 2, · · · , 10

𝑎𝑑 = (0, 0.1, 0.2, 0.3, 0.4, 0.8, 1, 2, 3, 4)

𝛿𝑑 ∼ 𝒰 [0, 1]; 𝑑 = 1, 2, · · · , 10

Analytical Solution

The analytical formulas for the variance terms of the Sobol-𝐺* function for X𝑑 ∼ 𝒰 [0, 1]; 𝑑 = 1, 2, · · · , 10 are the
following

Marginal Variance

V[𝐺*
2] =

[︃
𝐷∏︁

𝑑=1

(1 + 𝑉𝑑)

]︃
− 1

where 𝑉𝑑 is the top marginal variance given below,

Top Marginal Variance

𝑉𝑑 = V𝑑[E∼𝑑[𝐺*
2|𝑋𝑑]] =

𝛼2
𝑑

(1 + 2𝛼𝑑)(1 + 𝑎𝑑)2

Bottom Marginal Variance

𝑉 𝑇𝑑 = E∼𝑑[V𝑑[𝐺*
2|X∼𝑑]] = 𝑉𝑑

∏︁
𝑒 ̸=𝑑

(1 + 𝑉𝑒)

The analytical main- and total-effect sensitivity indices can be computed using their respective definition in relation to
the variance terms given above.

1 A. Saltelli et al., “Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index,” Computer Physics
Communication, vol. 181, no. 2, pp. 259 - 270, 2010.

1.6. Gallery of Applications to Test Functions 39

gsa-module Documentation, Release 0.9.0

Sobol Sensitivity Indices Results

The function was used to test the implementation of the Sobol sensitivity indices. The main-effect (first order) and
total-effect (total order) sensitivity indices are both computed. Both the sampling scheme type and the estimator for
the sensitivity indices were tested. The tested sampling schemes are simple random sampling (srs), latin-hypercube
sampling (lhs) and the sobol sampling (sobol). The tested estimators are janon and saltelli for the main-effect SI and
jansen and sobol for the total-effect SI (see Sobol’ Sensitivity Indices).

The following figure shows the convergence of the main-effect SI (first order) with the number of samples for the
second parameter (param1) of the 𝐺2 function. Each panel shows the janon and saltelli estimators, with their 1 − 𝜎
uncertainties, for a given sampling scheme. The dotted red line is the analytical solution (i.e. the target value).

A similar figure is shown below for the total-effect SI (tot-order) for the jansen and sobol estimators.

40 Chapter 1. gsa-module Documentation

gsa-module Documentation, Release 0.9.0

All estimators for the main- and total-effect SI converge to the analytical solution with a sufficient number of samples
(i.e. 104 in the worst case). As expected the sobol and lhs sampling schemes for the design matrix are clearly supe-
rior to the simple random scheme (srs) as the calculated main- and total-effect SI converge faster and with a lower
uncertainies; the sobol sampling scheme appears to be slightly better than lhs. Finally, comparing the estimators the
janon and jansen estimators show slightly better properties than the saltelli and sobol estimators. The better prop-
erties of the estimators and sampling schemes illustrated for param1 can vary slightly from parameter to parameter.
The convergence of the calculation, however, remains. This confirms the good implementation of the SI calculation
routines.

References

gsa-module Modules reference documentation

samples Package

gsa_module.samples.cmdln_args

gsa_module.samples._hammersley

gsa_module.samples.srs

1.7. gsa-module Modules reference documentation 41

gsa-module Documentation, Release 0.9.0

gsa_module.samples.lhs

gsa_module.samples.lhs_opt

gsa_module.samples.sobol

morris Package

sobol Package

test_functions Package

42 Chapter 1. gsa-module Documentation

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

43

	gsa-module Documentation
	gsa-module Basics
	User's Guide
	Theory and Implementation
	Developer's Guide
	About gsa-module
	Gallery of Applications to Test Functions
	gsa-module Modules reference documentation

	Indices and tables

