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gsa-module is a Python3 package implementing several global sensitivity analysis methods for com-
puter/simulation experiments. The implementation is based on a black-box approach where the computer model
(or any generic function) is externally implemented to the module itself. The module accepts the model outputs and
the design of experiment (optional, only for certain methods) and compute the associated sensitivity measures. The
package also includes routines to generate normalized design of experiment file to be used in the simulation experi-
ment based on several algorithms (such as simple random sampling or latin hypercube) as well as simple routines to
post-processed multivariate raw code output such as its maximum, minimum, or average.

The general calculation flow chart involved in using the gsa-module can be seen in the figure below.
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CHAPTER 1

gsa-module Documentation

gsa-module Basics

Introduction

List of Features

Installing gsa-module

Tutorial 1: Parameter Screening of the Sobol-G Test Function

Tutorial 2: Sobol’ Indices of the Borehole Function

User’s Guide

General Purpose Design of Experiment

Morris Screening Method

Successful installation of gsa-module will give access to two executables in the path useful to carry out Morris
screening analysis on model outputs:

1. gsa_morris_generate: executable to generate Morris (One-at-a-Time, OAT) design

2. gsa_morris_analyze: executable to compute the statistics of the elementary effects given model in-
puts/outputs as files

A more theoretical background of the method can be found in the implementation section of this documentation.
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Generating Morris Design (Sample)

The first step in conducting sensitivity analysis by Morris screening method is to generate One-at-a-Time design. The
Morris design generator driver script can be invoked from the terminal using the following command:

> gsa_morris_generate -r <number of blocks/replications> \
-d <number of input dimensions> \
-o <design matrix output filename> \
-sep <delimiter for the output file {csv, tsv, txt}, default =

→˓csv> \
-ss <sampling scheme {trajectory or radial}> \
-p <trajectory scheme only, number of levels> \
-s <trajectory scheme only, random seed number> \
-sobol <radial scheme only, the fullpath to Sobol' sequence

→˓generator executable> \
-dirnum <radial scheme only, the fullpath to Sobol' sequence

→˓generator direction numbers file>

Brief explanation on this parameter can be shown using the following command:

> gsa_morris_generate --help

By default the naming convention of the output file (if not explicitly specified is):

<sampling scheme>_<number of replications>_<number of input dimensions>_<number of
→˓levels, trajectory only>.csv

In general, the larger the number of replications the more accurate the sensitivity measures are. On the other hand,
a large number of levels (in trajectory design) increases the granularity in the input parameter space exploration.
However, this only makes sense if there is large number of replications otherwise there is big risk of using unbalance
design (bias in some part of input parameter space)

Example

As an example, consider the following command:

> gsa_morris_generate -r 10 -d 4 -p 6

The above command will generate a csv file with the name of trajectory_10_4_6.csv containing 50 rows
and 4 columns. 50 rows are obtained from the 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠× (𝑖𝑛𝑝𝑢𝑡𝑠+ 1) formula and it corresponds to the number of
model evaluations, while the number of columns corresponds to the number of input dimensions. In OAT design only
one parameter is changed between perturbation and in the case of trajectory scheme there is no base point per se as
the perturbations are carried out one parameter at a time from the last perturbed point. In the example above the size
of grid jump (∆ = 2/3) is locked to the number of levels.

Another example with more explicit specification of arguments:

> gsa_morris_generate -r 10 -d 6 -ss radial \
-o test_radial \
-sep txt \
-sobol ./path_to_sobol_gen/sobol_gen.x \
-dirnum ./path_to_sobol_gen/dirnum.txt

The above command will generate a space separated file test_radial.txt containing 70 rows and 6 columns.
The radial OAT design is generated using the specified Sobol’ sequence generator. In the radial design, multiple base
points are generated for different replications. The perturbation per parameter in each replication is relative to the base
point. Furthermore, number of level is not required to be specified as the size of grid jump differs from parameter to
parameter and from replication to replication.

4 Chapter 1. gsa-module Documentation
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Executing Model

Following the design philosophy of gsa-module the model executions are implemented outside the module itself.
The most important thing to remember is that the OAT design generated using gsa_morris_generate is normal-
ized (between [0,1]). If the actual model has a different scale of parameters or different probability distribution, the
proper transformation of the design point is to be carried out prior to the model evaluation. Note also that the results
of the execution should be saved inside a text file with rows corresponding to the results of each model execution.

In general, the number of model evaluations, both for trajectory and radial scheme, are related to the number of
replications (r) and the number of input dimensions (k):

𝑛𝑟𝑢𝑛𝑠 = 𝑟 × (𝑘 + 1)

Analyzing the I/O of Morris Experimental Runs

The last step in conducting the Morris screening analysis is to compute the statistics of the elementary effects for each
input. The minimum requirements for this computation are the design file and its corresponding model output. If
necessary, the rescaled design file can also be specified to compute the standardized version of the elementary effects.
The driver script to analyze the inputs/outputs of Morris experimental run can be invoked from the terminal using the
following command:

> gsa_morris_analyze -in <the normalized inputs file> \
-ir <the rescaled inputs file> \
-o <the model/function outputs file> \
-output <the results of the analysis output file> \
-mc <Verbose model error checking> \

Brief explanation on this parameter can be shown using the following command:

> gsa_morris_analyze --help

By default, the naming convention of the results of the analysis output file is:

<normalized inputs filename>-<model outputs file>.csv

The -mc flag is to verbosely give report on the model specification consistency. This includes:

1. Number of input dimensions in the design file

2. Number of blocks/replications in the design file

3. Total number of runs

4. Type of design

5. Number of levels and grid jump size (trajectory scheme only)

6. Rescaled inputs if specified

This information (except number 6) is directly inferred from the content of the normalized design file.

Example

As an example, consider that a 4-parameter model was evaluated according to the OAT design in the file
trajectory_10_4_10.csv. The output of the model was saved inside a file 4paramsFunction.csv.

To compute the statistics of the elementary effects of this I/O pair, invoke the following command:

> gsa_morris_analyze -in ./trajectory_10_4_10.csv -o ./4paramsFunction.csv -mc

1.2. User’s Guide 5
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The flag -mc will result in verbose reporting of the model specification:

Number of Input Dimensions = 4
Number of Blocks/Replications = 10
Total Number of Runs = 50
Type of Design = trajectory
Number of levels (trajectory) = 10 (Delta = 0.5556)
Rescaled Inputs = None

The results of the analysis is saved inside the file trajectory_10_4_10-4paramsFunction.csv with the
following contents:

# mu, mu_star, std_dev, std_mu, std_mu_star, std_std_dev
9.738333e+01,9.738333e+01,3.452392e+01,0.000000e+00,0.000000e+00,0.000000e+00
6.596656e+01,6.596656e+01,3.181203e+01,0.000000e+00,0.000000e+00,0.000000e+00
3.814122e+01,3.814122e+01,2.275404e+01,0.000000e+00,0.000000e+00,0.000000e+00
2.529044e+01,2.529044e+01,1.261223e+01,0.000000e+00,0.000000e+00,0.000000e+00

Each column corresponds to the appropriate sensitivity measure as indicated above. Note that the standardized version
of the elementary effects are taken to be zero as the rescaled input file was not specified. The parameter is ordered
according to the design matrix file (the first column is the first parameter, etc.)

Sobol’ Sensitivity Indices

Theory and Implementation

Sensitivity Analysis: Local vs. Global

Designs of Experiment

Morris Screening Method

Screening methods are used to rank the importance of the model parameters using a relatively small number of model
executions1. However, they tend to simply give qualitative measures. That is, meaningful information resides in the
rank itself but not in the exact importance of the parameters with respect to the output. These methods are particularly
valuable in the early phase of a SA to identify the non-influential parameters of a model, which then could be safely
excluded from further detailed analysis. This exclusion step is important to reduce the size of the problem especially
if a more expensive method is to be applied at the next step. In this work, attention was paid to a particular screening
method proposed by Morris2.

Elementary Effects

Consider a model with 𝐾 parameters, where 𝑥⃗ = (𝑥1, 𝑥2, ..., 𝑥𝐾) is a vector of parameter value mapped onto the
unit hypercube and 𝑦(𝑥⃗) is the model output evaluated at point 𝑥⃗. The elementary effect of parameter k is defined as
follow2 ,

𝐸𝐸𝑘 = 𝑌 (𝑥1,𝑥2,...,𝑥𝑘+Δ,...,𝑥𝐾)−𝑌 (𝑥1,𝑥2,...,𝑥𝐾)
Δ

Where ∆, the grid jump, is chosen such that 𝑥⃗ + ∆ is still in the specified domain of parameter space; ∆ is a value
in 1

𝑝−1 , . . . , 1 − 1
𝑝−1 where 𝑝 is the number of levels that partitions the model parameter space into a uniform grid

1 A. Saltelli et al., “Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models,” John Wiley & Sons, Ltd. United Kingdom (2004).
2 Max D. Morris, “Factorial Sampling Plans for Preliminary Computational Experiments”, Technometrics, Vol. 33, No. 2, pp. 161-174, 1991.
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of points at which the model can be evaluated. The grid constructs a finite distribution of size 𝑝𝐾−1[𝑝 − ∆(𝑝 − 1)]
elementary effects per input parameters.

The key idea of the original Morris method is in initiating the model evaluations from various “nominal” points 𝑥⃗
randomly selected over the grid and then gradually advancing one grid jump at a time between each model evaluation
(one at a time), along a different dimension of the parameter space selected randomly.

Statistics of Elementary Effects and Sensitivity Measure

Consider now that an 𝑛𝑅 number of elementary effects (or replicates) associated with the k’th parameter have been
sampled from the finite distribution of 𝐸𝐸𝑘. The statistical summary of 𝐸𝐸𝑘 from the sampled trajectories can be
calculated. The first is the arithmetic mean defined as,

𝜇𝑘 = 1
𝑛𝑅

Σ𝑛𝑅
𝑟=1𝐸𝐸𝑟

𝑘

The second statistical summary of interest is the standard deviation of the elementary effect associated with the k’th
parameter from all the trajectories,

𝜎𝑘 =
√︁

1
𝑛𝑅

Σ𝑛𝑅
𝑟=1(𝐸𝐸𝑟

𝑘 − 𝜇𝑘)2

The standard deviation gives an indication of the presence of nonlinearity and/or interactions between the k’th param-
eter and other parameters. As a change in a parameter value might have a changing sign on the output and thus result
in a cancelation effect (as can be the case for a nonmonotonic function), Campolongo et al.4 proposed the use of the
mean of the absolute elementary effect to circumvent this issue. It is defined as

𝜇*
𝑘 = 1

𝑛𝑅
Σ𝑛𝑅

𝑟=1|𝐸𝐸𝑟
𝑘|

The three aforementioned statistical summaries, when evaluated over a large number of trajectories 𝑛𝑅, can provide
global sensitivity measures of the importance of the k’th parameter. As indicated by Morris2 there are three possible
categories of parameter importance:

1. Parameters with noninfluential effects, i.e., the parameters that have relatively small values of both 𝜇𝑘 (or 𝜇*
𝑘)

and 𝜎𝑘. The small values of both indicate that the parameter has a negligible overall effect on the model output.

2. Parameters with linear and/or additive effects, i.e., the parameters that have a relatively large value of 𝜇𝑘 (or
𝜇*
𝑘) and relatively small value of 𝜎𝑘. The small value of 𝜎𝑘 and the large value of 𝜇𝑘 (or 𝜇*

𝑘) indicate that
the variation of elementary effects is small while the magnitude of the effect itself is consistently large for the
perturbations in the parameter space.

3. Parameters with nonlinear and/or interaction effects, i.e., the parameters that have a relatively small value of 𝜇𝑘

(or 𝜇*
𝑘) and a relatively large value of 𝜎𝑘. Opposite to the previous case, a small value of 𝜇𝑘 (or 𝜇*

𝑘) indicates that
the aggregate effect of perturbations is seemingly small while a large value of 𝜎𝑘 indicates that the variation of
the effect is large; the effect can be large or negligibly small depending on the other values of parameters at which
the model is evaluated. Such large variation is a symptom of nonlinear effects and/or parameter interaction.

Such classification makes parameter importance ranking and, in turn, screening of non-influential parameters possible.
However, the procedure is done rather qualitatively, and this is illustrated in the figure below, which depicts a typical
parameter classification derived from visual inspection of the elementary effect statistics on the 𝜎𝑘 versus 𝜇*

𝑘 plane.

4 F. Campolongo, A. Saltelli, and J. Cariboni, “From Screening to Quantitative Sensitivity Analysis. A Unified Approach,” Computer Physics
Communications, Vol. 192, pp. 978 - 988, 2011.

1.3. Theory and Implementation 7
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The notions of influential and non-influential parameters are based on the relative locations of those statistics in the
plane. Typically, the non-influential ones are clustered closer to the origin (relative to the more influential ones) with
a pronounced boundary such as depicted in the figure. Admittedly, if these statistics are spread uniformly across the
plane, the distinction would be more ambiguous (in this case, a more advanced classification such as the ones based
on clustering techniques might be helpful). Furthermore, for a parameter with large 𝜇𝑘 and 𝜎𝑘, the method cannot
distinguish between non-linearity effects from parameter interactions on the output.

Design of Experiment for Screening Analysis

There are two available experimental designs for to carry out the Morris screening method in gsa-module: the
trajectory design and radial OAT design.

Trajectory Design (Winding Stairs)

Trajectory design is the original Morris implementation of the design of experiment for screening design2. Essentially,
it is a randomized one-at-a-time design where each parameter is perturbed once, similar to that of the winding stairs
design proposed by Jansen et al.3. The most important feature of trajectory design is that it does not return to the
original base point after perturbation, but continue perturbing another dimension for the last perturbed point. This
ensures more efficient parameter space exploration although requires additional user-defined parameter called level4.

A trajectory design is defined by the number of trajectories (r), the number of levels (p), and the number of model
parameters (k). Each trajectories evaluate the model (k + 1) times so the economy of it in computing the elementary
effects statistics is r * (k+1) code runs.

A randomized trajectory design matrix is given by 𝑏* (2,5),

𝑏* = (𝑥* +
∆

2
× ((2 × 𝑏− 𝑗𝑘) × 𝑑* + 𝑗𝑘)) × 𝑝*

• 𝑏: a strictly lower triangular matrix of 1s, with dimension of (k + 1)-by-k

• 𝑥*: Random starting point in the parameter space, with dimension of (k + 1)-by-k - each row is the same.
3 Michiel J.W. Jansen, Walter A.H. Rossing, and Richard A. Daamen, “Monte Carlo Estimation of Uncertainty Contributions from Several

Independent Multivariate Sources,” in Predictability and Nonlinear Modelling in Natural Sciences and Economics, Dordrecht, Germany, Kluwer
Publishing, 1994, pp. 334 - 343.

5 A. Saltelli et al., “Global Sensitivity Analysis. The Primer,” West Sussex, John Wiley & Sons, 2008, pp. 114

8 Chapter 1. gsa-module Documentation
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• 𝑑*: a k-dimensional diagonal matrix which each element is either +1 or -1 with equal probability. This matrix
determines whether a parameter value will decrease or increase.

• 𝑝*: k-by-k random permutation matrix in which each row contains one element equal to 1, all others are 0,
and no two columns have 1s in the same position. This matrix determines the order in which parameters are
perturbed.

• 𝑗𝑘: (k + 1)-by-k matrix of 1s

• ∆: factorial increment in a diagonal matrix of (k + 1)-by-(k + 1)

The following is an example of a trajectory design in 2-dimensional input space with 4 trajectories (or replicates). The
input parameter space is uniformly divided into 6 levels. The filled circles are the random base (nominal) points from
which the random perturbation of the same size (i.e., the grid jump) is carried out one-at-a-time.

Radial Design

Radial design is a design for screening analysis proposed in4. Similar to trajectory design it is based on an extension
of one-at-a-time design. In the implementation of4, Sobol’ quasi-random sequence is used as the basis. Its main
advantage over the trajectory design is that the specification of input discretization level by user is no longer required.
Furthermore, the grid jump will also be varying from one input dimension to another, and from replicate to replicate
incorporating additional possible sources of variation in the method.

The procedure to generate radial design of r replicates is as follow:

1. Generate Sobol’ sequence with dimension (r+R, 2*k). R is the shift to avoid repetition in the sequence.
The value of R is recommended to be fixed at 4 following4, but see Choosing Shifting Value below for
additional comments.

2. The first half of the matrix up to the r-th row will serve as the base points: 𝑎𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . 𝑥𝑖,𝑘) ; 𝑖 =
1, . . . 𝑟. The second half of the matrix, starting from the R+1-th row will serve as the auxiliary points, from

1.3. Theory and Implementation 9
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which the perturbed states of the base point are created: 𝑏𝑖 = (𝑥𝑅+𝑖,𝑘+1, 𝑥𝑅+𝑖,𝑘+2, . . . 𝑥𝑅+𝑖,2𝑘) ; 𝑖 =
1, . . . 𝑟

3. For each row of the base points, create a set of perturbed states by substituting the value at each dimension
by the value from the auxiliary points at the same dimension, one at a time. For each base point, there
will be additional k perturbed points. For instance the 1st perturbed point of the i-th base point a_i is
𝑎*,1𝑖 = (𝑥𝑅+𝑖,𝑘+1, 𝑥𝑖,2, . . . 𝑥𝑖,𝑘), while the second is 𝑎*,2𝑖 = (𝑥𝑖,1, 𝑥𝑅+𝑖,𝑘+2, . . . 𝑥𝑖,𝑘). In general the j-th
perturbed point of the i-th base point is 𝑎*,𝑗𝑖 = (𝑥𝑖,1, . . . 𝑥𝑅+𝑖,𝑘+𝑗 , . . . 𝑥𝑖,𝑘).

4. A single elementary effect for each input dimension can be computed on the basis of function evaluations
at k+1 points: 1 base point and k perturbed points.

5. Repeat the process until the requested r replications have been constructed.

An illustration of radial OAT design generation based on Sobol’ sequence can be seen in the figure below.

As such the radial design has the same economy as the trajectory design, that is r * (k+1) computations for a k-
dimensional model with r replications. The computation of the elementary effect 𝐸𝐸𝑖, however, is slightly different
due to the fact that now the grid jump differs for each input dimension at each replication.

𝐸𝐸𝑖
𝑗 =

⃒⃒⃒⃒
⃒ 𝑦(𝑎*,𝑗𝑖 ) − 𝑦(𝑎𝑖)

𝑥𝑅+𝑖,𝑘+𝑗 − 𝑥𝑖,𝑗

⃒⃒⃒⃒
⃒

• 𝑦(𝑎*,𝑗𝑖 ): function value at j-th perturbed point of the i-th replicate.

• 𝑦(𝑎𝑖): function value at the base point of the i-th replicate.

10 Chapter 1. gsa-module Documentation
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• 𝑥𝑅+𝑖,𝑘+𝑗 : the perturbed input at dimension j of the i-th replicate.

• 𝑥𝑖,𝑗 : the base input at dimension j of the i-th replicate.

As can be seen the average over many replications of the elementary effect defined above will automatically yield 𝜇*.

The following is an example of a radial design in 2-dimensional input space with 4 base points (filled circles), located
not necessarily in a specific grid. The perturbations are carried out from these base points (crosses). The size of the
perturbation differs from input dimension to input dimension and from replicate to replicate.

Choosing Shifting Value

As mentioned the recommendation given by4 for the value of R is 4. This value reflects the fact that the a sample of
Sobol’ sequence across dimension tends to repeat values, especially in the first several rows. For example, the first two
Sobol’ samples used here have the values of 0.0 and 0.5 in all of the dimensions. If such repetition in value happened
one or more rows in the ∆ matrix will be zero (so is the ∆𝑌 vector), and cause the system of linear equation to be
under-determined.

But except for the obvious repetitions of values in different dimensions in the first several samples any other repetitions
cannot be excluded to reoccur down the line of samples. As such the value of R has to be picked carefully and from our
experience this value is highly dependent on the number of samples and/or dimension. Yet, the of the main points of
using radial design in the first place was to avoid specifying the number of levels p. Choosing R for different number
of samples and/or dimensions definitely defeat the purpose of using radial design.

A pragmatic solution for this problem, which is adopted here, is to check whether a given auxiliary point has the same
value with the base point in one or more dimension, every time a block of one-at-a-time design is generated. If it has
then use the next auxiliary point instead. Finally, to replace the missing auxiliary point, an additional point is generated
using the Sobol’ sequence.

1.3. Theory and Implementation 11



gsa-module Documentation, Release 0.5.3

Miscellaneous Topics

Computation of the Elementary Effect

In gsa-module, computing the elementary effect for each replications is achieved by using matrix algebra, which
is similar to the implementation in6. There is slight difference between the computation of elementary effects for
trajectory design and radial design. The following figure illustrate the computation of all the elementary effects of a
single replicate for 3-parameter model using trajectory design with 4 levels.

The following figure illustrate the same computation of a single replicate for 3-parameter model using radial design
(no number of levels specification needed).

6 Jon D. Herman, SALib [Source Code], March 2014, https://github.com/jdherman/SALib

12 Chapter 1. gsa-module Documentation
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The statistics of the elementary effects are eventually computed after the same procedure are repeated for many repli-
cations.

Presenting the Results of the Analysis

Standardized Elementary Effect

In the original implementation of Morris method2, the input parameter is normalized, that is all the parameters values
lie between 0, 1. Furthermore, following the suggestion by Saltelli et al.5, the grid jump size is kept constant for a
given number of levels for all parameters. As such, the method is prone to misrank the important parameters if there
is a vast difference in the original scale of various parameters (e.g., [0,1] in one parameter, [10,100] in another, etc.).
The normalized scale of [0,1] would then be biased to the parameter who has the largest scale of variation. To compare
the elementary effect in a common ground taking into account the original scale of variation for each parameter, it is
advised in7 to scale the elementary effect with the standard deviation of the input 𝜎𝑥𝑖

and of the output 𝜎𝑦 ,

𝑆𝐸𝐸𝑖 =
𝜎𝑥𝑖

𝜎𝑦

∆𝑦

∆𝑥𝑖

In gsa-module, the standardized elementary effect is automatically computed if the rescaled input parameters values
are specified. It is used to compute the standard deviation for each of the parameters taking into account the original
scale of variation of each.

7 G. Sin and K. V. Gernaey, “Improving the Morris Method for Sensitivity Analysis by Scaling the Elementary Effects,” in Proc. 19th European
Symposium on Computer Aided Process Engineering, 2009

1.3. Theory and Implementation 13
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Optimized Trajectory Design

References

Sobol’ Sensitivity Indices

Variance-based methods for global sensitivity analysis use variance as the basis to define a measure of input parameter
influence on the overall output variation1. In a statistical framework of sensitivity and uncertainty analysis, this choice
is natural because variance (or standard deviation, a related concept) is often used as a measure of dispersion or
variability in the model prediction2. A measure of such dispersion, in turn, indicates the precision of the prediction
due to variations in the input parameters.

This section of the documentation discusses the origin of Sobol’ sensitivity indices and the method to estimate them
by Monte Carlo simulation.

High-Dimensional Model Representation

Consider once more a mathematical model 𝑓 : x ∈ [0, 1]𝐷 ↦→ 𝑦 = 𝑓(x) ∈ R. The high-dimensional model
representation (HDMR) of 𝑓(x) is a linear combination of functions with increasing dimensionality3,

𝑓(x) = 𝑓𝑜 +
∑︁

𝑑=1,2,...𝐷

𝑓𝑑(𝑥𝑑) +
∑︁

1≤𝑑<𝑒≤𝐷

𝑓𝑑,𝑒(𝑥𝑑, 𝑥𝑒) + · · · + 𝑓1,2,··· ,𝐷(𝑥1, 𝑥2, · · · , 𝑥𝐷) (1.1)

where 𝑓𝑜 is a constant.

The representation in the above equation is unique given the following condition4:∫︁ 1

0

𝑓𝑖1,𝑖2,···𝑖𝑠(𝑥𝑖1, 𝑥𝑖2, · · · , 𝑥𝑖𝑠)𝑑𝑥𝑖𝑚 = 0

for 𝑚 = 1, 2, · · · , 𝑠; 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑠 ≤ 𝐷;

and 𝑠 ∈ 1, · · · , 𝐷

(1.2)

Assume now that X is a random vector of independent and uniform random variables over a unit hypercube {Ω =
x|0 ≤ 𝑥𝑖 ≤ 1; 𝑖 = 1, · · ·𝐷} such that

𝑌 = 𝑓(X)

where 𝑌 is a random variable, resulting from the transformation of random vector X by function 𝑓 . Using Eq. (1.2)
to express each term in Eq. (1.1), it follows that

𝑓𝑜 = E[𝑌 ]

𝑓𝑑(𝑥𝑑) = E∼𝑑[𝑌 |𝑋𝑑] − E[𝑌 ]

𝑓𝑑,𝑒(𝑥𝑑, 𝑥𝑒) = E∼𝑑,𝑒[𝑌 |𝑋𝑑, 𝑋𝑒] − E∼𝑑[𝑌 |𝑋𝑑] − E∼𝑒[𝑌 |𝑋𝑒] − E[𝑌 ]

(1.3)

The same follows for higher-order terms in the decomposition. In Eq. (1.3), E∼𝑒[𝑌 |𝑋𝑒] corresponds to the conditional
expectation operator, and the ∼ ∘ in the subscript means that the integration over the parameter space is carried out
over all parameters except the specified parameter in the subscript. For instance, E∼1[𝑌 |𝑋1] refers to the conditional

1 Dan G. Cacuci and Mihaela Ionescu-Bujor, “A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems - II:
Statistical Methods,” Nuclear Science and Engineering, vol. 147, no. 3, pp. 204-217, 2004.

2 A. Saltelli et al., “Global Sensitivity Analysis. The Primer,” West Sussex, John Wiley & Sons, 2008.
3 Genyuan Li, Carey Rosenthal, and Herschel Rabitz, “High Dimensional Model Representations,” The Journal of Physical Chemistry A, vol.

105, no. 33, pp. 7765-7777, 2001.
4 I. M. Sobol, “Global Sensitivity Analysis for nonlinear mathematical models and their Monte Carlo estimates,” Mathematics and Computers

in Simulation, vol. 55, no. 1-3, pp. 271-280, 2001.
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mean of 𝑌 given 𝑋1, and the integration is carried out for all possible values of parameters in x except 𝑥1. Note that
because 𝑋1 is a random variable, the expectation conditioned on it is also a random variable.

Assuming that 𝑓 is a square integrable function, applying the variance operator on 𝑌 results in

V[𝑌 ] =

𝐷∑︁
𝑑=1

V[𝑓𝑑(𝑥𝐷)] +
∑︁

1≤𝑑<𝑒≤𝐷

V[𝑓𝑑,𝑒(𝑥𝑑, 𝑥𝑒)] + · · · + V[𝑓1,2,··· ,𝐷(𝑥1, 𝑥2, · · · , 𝑥𝐷)] (1.4)

Sobol’ Sensitivity Indices

Division by V[𝑌 ] aptly normalizes Eq. (1.4)

1 =

𝐷∑︁
𝑑=1

𝑆𝑑 +
∑︁

1≤𝑑<𝑒≤𝐷

𝑆𝑑,𝑒 + · · · + 𝑆1,2,··· ,𝐷

The Sobol’ main-effect sensitivity index 𝑆𝑑 is defined as,

𝑆𝑑 =
V𝑑[E∼𝑑[𝑌 |𝑋𝑑]]

V[𝑌 ]
(1.5)

The numerator is the variance of the conditional expectation, and the index is a global sensitivity measure interpreted
as the amount of variance reduction in the model output if the parameter 𝑋𝑑 is fixed (i.e., its variance is reduced to
zero).

A closely related sensitivity index proposed by Homma and Saltelli5 is the Sobol’ total-effect index defined as,

𝑆𝑇𝑑 =
E∼𝑑[V𝑑[𝑌 |X∼𝑑]]

V[𝑌 ]
(1.6)

The index, also a global sensitivity measure, can be interpreted as the amount of variance left in the output if the values
of all input parameters, except 𝑥𝑑, can be fixed.

These two sensitivity measures can be related to the objectives of global SA for model assessment as proposed by
Saltelli et al. (26). The main-effect index is relevant to parameter prioritization in the context of identifying the most
influential parameter since fixing a parameter with the highest index value would, on average, lead to the greatest
reduction in the output variation.

The total-effect index, on the other hand, is relevant to parameter fixing (or screening) in the context of identifying the
least influential set of parameters since fixing any parameter that has a very small total-effect index value would not
lead to significant reduction in the output variation. The use of total-effect index to identify which parameter can be
fixed or excluded is similar to that of the elementary effect statistics of the Morris method, albeit more exact but also
more computationally expensive to compute. And finally, the difference between the two indices of a given parameter
(Eqs. (1.6) and (1.5)) is used to quantify the amount of all interactions involving that parameters in the model output.

The Sobol’-Saltelli Method

Monte Carlo Integration

In principle, the estimation of the Sobol’ indices defined by Eqs. (1.5) and (1.6) can be directly carried out using Monte
Carlo (MC) simulation. The most straightforward, though rather naive, implementation of MC simulation to conduct
the estimation is using two nested loops for the computation of the conditional variance and expectation appeared in
both equations.

5 Toshimitsu Homma and Andrea Saltelli, “Importance Measures in Global Sensitivity Analysis of Nonlinear Models,” Reliability Engineering
and System Safety, vol. 52, no. 1, pp. 1-17, 1996.

6 A. Saltelli et al., “Sensitivity Analysis in Practice: a Guide to Assessing Scientific Models,” West Sussex, John Wiley & Sons, 2004.
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In the estimation of the main-effect index of parameter 𝑥𝑑, for instance, the outer loop samples values of 𝑋𝑑 while
the inner loop samples values of X∼𝑑 (anything else other than 𝑥𝑑). These samples, in turn, are used to evaluate
the model output. In the inner loop, the mean of the model output (for a given value of 𝑋𝑑 but over many values of
X∼𝑑) is taken. Afterward, in the outer loop, the variance of the model output (over many values of 𝑋𝑑) is taken. This
approach can easily become prohibitively expensive as the nested structure requires two 𝑁2 model evaluations per
input dimension for either the main-effect and total-effect indices, while 𝑁 (the size of MC samples) are typically in
the range of 102 − 104 for a reliable estimate.

Sobol’4 and Saltelli7 proposed an alternative approach that circumvent the nested structure of MC simulation to esti-
mate the indices. The formulation starts by expressing the expectation and variance operators in their integral form.
As the following formulation is defined on a unit hypercube of 𝐷-dimension parameter space where each parameter
is a uniform and independent random variable, explicit writing of the distribution within the integration as well as the
integration range are excluded for conciseness.

First, the variance operator shown in the numerator of Eq. (1.5) is written as

V𝑑[E∼𝑑[𝑌 |𝑋𝑑]] = E𝑑[E2
∼𝑑[𝑌 |𝑋𝑑]] − (E𝑑[E∼𝑑[𝑌 |𝑋𝑑]])

2

=

∫︁
E2
∼𝑑[𝑌 |𝑋𝑑]𝑑𝑥𝑑 −

(︂∫︁
E∼𝑑[𝑌 |𝑋𝑑]𝑑𝑥𝑑

)︂2 (1.7)

The notation E∼∘[∘|∘] was already explained in the previous subsection, while E∘[∘] corresponds to the marginal
expectation operator where the integration is carried out over the range of parameters specified in the subscript.

Next, consider the term conditional expectation shown in Eq. (1.7), which per definition reads

E∼𝑑[𝑌 |𝑋𝑑] =

∫︁
𝑓(x∼𝑑, 𝑥𝑑)𝑑x∼𝑑 (1.8)

Note that x = {x∼𝑑, 𝑥𝑑}.

Following the first term of Eq. ss_variance_integral, by squaring Eq.
:eq:`ss_expectation_integral and by defining a dummy vector variable
:math:mathbf{x}^{prime}_{sim d}‘, the product of the two integrals can be written in terms of a single
multiple integrals

E2
∼𝑑[𝑌 |𝑋𝑑] =

∫︁
𝑓(x∼𝑑, 𝑥𝑑)𝑑x∼𝑑 ·

∫︁
𝑓(x∼𝑑, 𝑥𝑑)𝑑x∼𝑑

=

∫︁ ∫︁
𝑓(x′

∼𝑑, 𝑥𝑑)𝑓(x∼𝑑, 𝑥𝑑)𝑑x′
∼𝑑𝑑x∼𝑑

(1.9)

Returning to the full definition of variance of conditional expectation in Eq. (1.7),

V𝑑[E∼𝑑[𝑌 |𝑋𝑑]] =

∫︁ ∫︁
𝑓(x′

∼𝑑, 𝑥𝑑)𝑓(x∼𝑑, 𝑥𝑑)𝑑x′
∼𝑑𝑑x∼𝑑

−
(︂∫︁

𝑓(x)𝑑x

)︂2 (1.10)

Finally, the main-effect sensitivity index can be written as an integral as follows:

𝑆𝑑 =
V𝑑[E∼𝑑[𝑌 |𝑋𝑑]]

V[𝑌 ]

=

∫︀ ∫︀
𝑓(x′

∼𝑑, 𝑥𝑑)𝑓(x∼𝑑, 𝑥𝑑)𝑑x′
∼𝑑𝑑x−

(︀∫︀
𝑓(x)𝑑x

)︀2∫︀
𝑓(x)2𝑑x−

(︀∫︀
𝑓(x)𝑑x

)︀2 (1.11)

The integral form given above dispenses with the nested structure of multiple integrals in the original definition of
main-effect index. The multidimensional integration is over 2 × 𝐷 − 1 dimensions and it is the basis of estimating

7 A. Saltelli, “Making best use of model evaluations to compute sensitivity indices,” Computer Physics Communications, vol. 145, no. 2, pp.
280-297, 2002.
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sensitivity index using MC simulation in this implementation, hereinafter referred to as the Sobol’-Saltelli method.
The same procedure applies to derive the total effect-index which yields,

𝑆𝑇𝑑 =
E∼𝑑[V𝑑[𝑌 |X∼𝑑]]

V[𝑌 ]

=

∫︀
𝑓2(x)𝑑x−

∫︀ ∫︀
𝑓(x∼𝑑, 𝑥

′
𝑑)𝑓(x∼𝑑, 𝑥𝑑)𝑑x′

𝑑𝑑x∫︀
𝑓(x)2𝑑x−

(︀∫︀
𝑓(x)𝑑x

)︀2 (1.12)

For 𝑁 number of MC samples and 𝐷 number of model parameters, MC simulation procedure to estimate the sensitivity
indices follows the sampling and resampling approach adopted in4,5,7 described in the following.

Procedures

First, generate two 𝑁 × 𝐷 independent random samples from a uniform independent distribution in 𝐷-dimension,
[0, 1]𝐷:

𝐴 =

⎛⎜⎝𝑎11 · · · 𝑎1𝐷
...

. . .
...

𝑎𝑁1 · · · 𝑎𝑁𝐷

⎞⎟⎠ ; 𝐵 =

⎛⎜⎝ 𝑏11 · · · 𝑏1𝐷
...

. . .
...

𝑏𝑁1 · · · 𝑏𝑁𝐷

⎞⎟⎠ (1.13)

Second, construct 𝐷 additional design of experiment matrices where each matrix is matrix 𝐴 with the 𝑑-th column
substituted by the 𝑑-th column of matrix :math:‘B:

𝐴1
𝐵 =

⎛⎜⎝ 𝑏11 · · · 𝑎1𝐷
...

. . .
...

𝑏𝑁1 · · · 𝑎𝑁𝐷

⎞⎟⎠
𝐴𝑑

𝐵 =

⎛⎜⎝𝑎11 · · · 𝑏1𝑑 · · · 𝑎1𝐷
... · · ·

... · · ·
...

𝑎𝑁1 · · · 𝑏𝑁𝑑 · · · 𝑎𝑁𝐷

⎞⎟⎠
𝐴𝐷

𝐵 =

⎛⎜⎝𝑎11 · · · 𝑏1𝐷
...

. . .
...

𝑎𝑁1 · · · 𝑏𝑁𝐷

⎞⎟⎠
Third, rescale each element in the matrices of samples to the actual values of model parameters according to their
actual range of variation through iso-probabilistic transformation.

Fourth, evaluate the model multiple times using input vectors that correspond to each row of 𝐴, 𝐵, and all the 𝐴𝑑
𝐵 .

Fifth and finally, extract the quantities of interest (QoIs) from all the outputs and recast them as vectors. The main-
effect and total-effect indices are then estimated using the estimators described below.

Monte Carlo Estimators

For the main-effect sensitivity index, two estimators are considered. One is proposed by Saltelli7, and the other, as an
alternative, is proposed by Janon et al.8. The latter proved to be more efficient, especially for a large variation around
a parameter estimate8.

The first term in the numerator of Eq. (1.11) is the same for both estimators and is given by∫︁ ∫︁
𝑓(x′

∼𝑑, 𝑥𝑑)𝑓(x∼𝑑, 𝑥𝑑)𝑑x′
∼𝑑𝑑x∼𝑑 ≈ 1

𝑁

𝑁∑︁
𝑛=1

𝑓(𝐵)𝑛 · 𝑓(𝐴𝑑
𝐵)𝑛 (1.14)

8 A. Janon et al., “Asymptotic normality and efficiency of two Sobol’ index estimators,” ESAIM: Probability and Statistics, vol. 18, pp. 342-364,
2014.
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where the subscript 𝑛 corresponds to the row of the sampled model parameters such that 𝑓(𝐵)𝑛 is the model output
evaluated using inputs taken from the 𝑛-th row of matrix 𝐵 and 𝑓(𝐴𝑑

𝐵)𝑛 is the model output evaluated using inputs
taken from the 𝑛-th row of matrix 𝐴𝐾

𝐵 . The MC estimator for the second term in the numerator and for the denominator
differ for the two considered estimators given in Table below.

Estimator E2[𝑌 ] =
(︀∫︀

𝑓𝑑x
)︀2 V[𝑌 ] =

∫︀
𝑓2𝑑x−

(︀∫︀
𝑓𝑑x

)︀2
Saltelli7 1

𝑁

∑︀
𝑓(𝐴)𝑛 · 𝑓(𝐵)𝑛

1
𝑁

∑︀
𝑓(𝐴)2𝑛 −

(︀
1
𝑁

∑︀
𝑓(𝐴)𝑛

)︀2
Janon et al.8

(︁
1
𝑁

∑︀ 𝑓(𝐵)𝑛+𝑓(𝐴𝑑
𝐵)𝑛

2

)︁2
1
𝑁

∑︀ 𝑓(𝐵)2𝑛+𝑓(𝐴𝑑
𝐵)2𝑛

2 −
(︁

1
𝑁

∑︀ 𝑓(𝐵)2𝑛+𝑓(𝐴𝑑
𝐵)2𝑛

2

)︁2

The general formula of the main-effect sensitivity index estimator is

̂︀𝑆𝑑 =
1
𝑁

∑︀𝑁
𝑛=1 𝑓(𝐵)𝑛 · 𝑓(𝐴𝑑

𝐵)𝑛 − E2[𝑌 ]

V[𝑌 ]
(1.15)

where and E2[𝑌 ] and V[𝑌 ] are as prescribed in the table above.

The general formula of the total-effect sensitivity indices follows the definition of it as given in (1.6). The denominator
E∼𝑑[V𝑑[𝑌 |X∼𝑑]] is estimated using the estimators listed in the table below, while V[𝑌 ] is estimated by the Saltelli et
al. estimator in table above.

Estimator E∼𝑑[V𝑑[𝑌 |X∼𝑑]]
Sobol-Homma5 1

𝑁

∑︀
𝑓2(𝐴)𝑛 · 𝑓(𝐴)𝑛𝑓(𝐴𝐵𝑑)𝑛

Jansen10 1
2𝑁

∑︀(︀
𝑓(𝐴)𝑛 − 𝑓(𝐴𝐵𝑑)𝑛

)︀2
The computational cost associated with the estimation of all the main-effect and total-effect indices is 𝑁 × (𝐷 + 2)
code runs, where 𝑁 is the number of MC samples and 𝐷 is the number of parameters. Compare this to the cost of
brute force Monte Carlo of 2 ×𝐷 ×𝑁2 code runs to estimate all the main-effect and total-effect sensitivity indices.

As an additional comparison, the cost for Morris method to compute the statistics of elementary effect is 𝑁𝑅×(𝐷+1)
code runs, where :math‘N_R‘ is the number of OAT design replications. In either methods, the number of samples
:math‘N‘ (in the case of the Sobol’-Saltelli method) and replications 𝑁𝑅 (in the case of the Morris method) determines
the precision of the estimates. A larger number of samples (and replications) increases the precision. Note, however,
that in practice the typical number of Morris replications is between 101−10210, while the number of gls{mc} samples
for the Sobol’ indices estimation amounts to 102 − 1044.

10 F. Campolongo, A. Saltelli, and J. Cariboni, “From Screening to Quantitative Sensitivity Analysis. A Unified Approach,” Computer Physic
Communications, vol. 182, no. 4, pp. 978-988, 2011.
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Ishigami Function

Ishigami function is a 3-dimensional function introduced by Ishigami and Homma1,

𝑓(x) = sin𝑥1 + 𝑎 sin2 𝑥2 + 𝑏𝑥4
3 sin𝑥1

𝑥𝑑 ∼ 𝑈 [−𝜋, 𝜋]; 𝑑 = 1, 2, 3

the parameters a and b can be adjusted but have default values of 7 and 0.1, respectively.

1 T. Homma and A. Saltelli, “Importance measures in global sensitivity analysis of nonlinear models,” Reliability Engineering and System
Safety, vol. 52, pp. 1-17, 1996.

1.4. Developer’s Guide 19



gsa-module Documentation, Release 0.5.3

Analytical Solution

The analytical formulas for the variance terms of the Ishigami function for X𝑑 ∼ 𝒰 [−𝜋, 𝜋]; 𝑑 = 1, 2, 3 and the given
parameter 𝑎 and 𝑏 are the following

Marginal Variance

V[𝑌 ] =
𝑎2

8
+

𝑏𝜋4

5
+

𝑏2𝜋8

18
+

1

2

Top Marginal Variance

𝑉1 = V1[E2,3[𝑌 |𝑋1]]

=
1

2

(︂
1 +

𝑏𝜋4

5

)︂2

𝑉2 = V2[E1,3[𝑌 |𝑋2]]

=
𝑎2

8
𝑉3 = V3[E1,2[𝑌 |𝑋3]]

= 0

Bottom Marginal Variance

𝑉 𝑇1 = E2,3[V1[𝑌 |X2,X3]] =
1

2

(︂
1 +

𝑏𝜋4

5

)︂2

+
8𝑏2𝜋8

225

𝑉 𝑇2 = E1,3[V2[𝑌 |X1,X3]] =
𝑎2

8

𝑉 𝑇3 = E1,2[V3[𝑌 |X1,X2]] =
8𝑏2𝜋8

225

The analytical main- and total-effect sensitivity indices can be computed using their respective definition in relation to
the variance terms given above.

Morris Screening Results

The function was used to test the implementation of the Morris screening and most precisely that of the two designs
of experiment: the trajectory and radial designs (see Morris Screening Method).

Trajectory sampling design

The trajectory effect is the original design proposed by Morris. The design matrix was generated with:

• number of trajectories (r) equal to 10, 100 and 1000 times the number of parameter (k=3),

• and levels (p) equal to 4, 8, 12 and 20.

Each generated design was used to evaluate the Morris modified function and the associated elementary effects were
calculated.

The following figures show the 𝜎 vs. 𝜇* plot for the four parameters of the Ishigami function for different sets of r
and p values. Each set of (r, p) value was repeated 1000 times and a histogram of the results is presented for each
parameter in the figures.

20 Chapter 1. gsa-module Documentation



gsa-module Documentation, Release 0.5.3

1.6. Gallery of Applications to Test Functions 21



gsa-module Documentation, Release 0.5.3

22 Chapter 1. gsa-module Documentation



gsa-module Documentation, Release 0.5.3

1.6. Gallery of Applications to Test Functions 23



gsa-module Documentation, Release 0.5.3

Countrary to the Modified Morris Function, the value of the elementary design with a level p=4 is quite different that
the values obtained with the other level values. This remains true for a very large number of trajectories (i.e. 3000).
The predictions with a level of 8 or higher are consistent.

We also observe that a number of trajectories equals to 10 times the number of parameter (i.e. 30) is not sufficient to
entirely classified the parameters (as the histograms of parameters 0 and 2 overlap). A minimum number of trajectories
of about 100 times the number of parameter is necessary for the Ishigami function to separate the parameters.
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Radial sampling design

The radial sampling design has been proposed by Campagnolo et al. and is described in more details at Morris
Screening Method. Only a number of trajectories, here called blocks to differentiate from the previous design, is
required. For testing purposes we investigated, as previously, numbers of blocks (r) equal to 10, 100 and 1000 times
the number of parameter (k=3).

Each generated design was used to evaluate the Ishigami function and the associated elementary effects were calcu-
lated.

The following figures show the 𝜎 vs. 𝜇* plot for the three parameters of the Ishigami function and for the three sets
of r values. Countrary to the trajectory design, the radial design uses the Sobol generator, which is deterministic. As
such no repetitions were performed to investigate the dispersion of the (𝜎, 𝜇*) values.
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The values are found to be quite stable, even for a block value of r=30. They differ, however, significantly from that
obtained with the trajectory design (Section Trajectory sampling design).

The exact value for the elementary effects were not found in litterature. However, the sensitivity indices are 𝑆1 =
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0.3138, 𝑆2 = 0.4424 and 𝑆3 = 01. Because 𝜇* and S quantify the same information, we expect them to be ordered in
the same way. Therefore the results obtained with the radial sampling design appear preferable.

Sobol Sensitivity Indices Results

The function was used to test the implementation of the Sobol sensitivity indices. The main-effect (first order) and
total-effect (total order) sensitivity indices are both computed. Both the sampling scheme type and the estimator for
the sensitivity indices were tested. The tested sampling schemes are simple random sampling (srs), latin-hypercube
sampling (lhs) and the sobol sampling (sobol). The tested estimators are janon and saltelli for the main-effect SI and
jansen and sobol for the total-effect SI (see Sobol’ Sensitivity Indices).

The following figure shows the convergence of the main-effect SI (first order) with the number of samples for the first
parameter (param0) of the Ishigami’s function. Each panel shows the janon and saltelli estimators, with their 1 − 𝜎
uncertainties, for a given sampling scheme. The dotted red line is the analytical solution (i.e. the target value).

A similar figure is shown below for the total-effect SI (tot-order) for the jansen and sobol estimators.
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All estimators for the main- and total-effect SI converge to the analytical solution with a sufficient number of samples
(i.e. 104 in the worst case). As expected the sobol and lhs sampling schemes for the design matrix are clearly
superior to the simple random scheme (srs) as the calculated main- and total-effect SI converge faster and with a
lower uncertainies; the sobol sampling scheme appears to be only slightly better than lhs. Finally, comparing the
estimators the janon and jansen estimators show slightly better properties than the saltelli and sobol estimators. These
conclusions remain the same for all input parameter of the Ishigami’s function.

From a practical point of view, we advise to use the sobol or lhs sampling scheme with at least 1000 points. The
estimator does not play a significant role.

References

Modified Morris Function

A modified version of test function appeared in Morris’ original article1 is used as a test function in this module.
Instead of 20-dimensional function, the modified version is only 4-dimensional and truncated as follows,

𝑓(𝑥) =

4∑︁
𝑖=1

𝛽𝑖𝑥𝑖 +

4∑︁
𝑖≤𝑗

𝛽𝑖,𝑗𝑥𝑖𝑥𝑗

𝛽𝑖 = [0.05, 0.59, 10.0, 0.21]

1 Max D. Morris, “Factorial Sampling Plan for Preliminary Computational Experiments,” Technometrics, vol. 33, no. 2, pp. 161 - 174, 1991.
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𝛽𝑖,𝑗 =

⎡⎢⎢⎣
0 80 60 40
0 30 0.73 0.18
0 0 0.64 0.93
0 0 0.0 0.06

⎤⎥⎥⎦
The function accepts inputs 𝑥 the component of which are :math: 0 < x_i leq 1.

Morris Screening Results

The function was used to test the implementation of the Morris screening and most precisely that of the two designs
of experiment: the trajectory and radial designs Morris Screening Method.

Trajectory sampling design

The trajectory effect is the original design proposed by Morris. The design matrix was generated with:

• number of trajectories (r) equal to 10, 100 and 1000 times the number of parameter (k=4),

• and levels (p) equal to 4, 8, 12 and 20.

Each generated design was used to evaluate the Morris modified function and the associated elementary effects were
calculated.

The following figures show the 𝜎 vs. 𝜇* plot for the four parameters of the Morris modified function for different sets
of r and p values. Each set of (r, p) value was repeated 1000 times and a histogram of the results is presented for each
parameter in the figures.
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The elementary effects of the function are similar for all combinations of r and p values and consistent with the
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expected values. As expected, the histogram dispersion is reduced when the number of trajectories increases. The
classification of the parameters is stable already for an number of trajectories equals to 10 times the nubmer of dimen-
sion.

Radial sampling design

The radial sampling design has been proposed by Campagnolo et al. and is described in more details at Morris
Screening Method. Only a number of trajectories, here called blocks to differentiate from the previous design, is
required. For testing purposes we investigated, as previously, numbers of blocks (r) equal to 10, 100 and 1000 times
the number of parameter (k=4).

Each generated design was used to evaluate the Morris modified function and the associated elementary effects were
calculated.

The following figures show the 𝜎 vs. 𝜇* plot for the four parameters of the Morris modified function and for the three
sets of r values. Countrary to the trajectory design, the radial design uses the Sobol generator, which is deterministic.
As such no repetitions were performed to investigate the dispersion of the (𝜎, 𝜇*) values.
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The values are found to be quite stable, even for a block value of r=40 and are in agreement with that obtained with
the trajectory design (Section Trajectory sampling design). A better quanitification of the convergence to the reference
values of 𝜎, 𝜇* is shown in the table below. The only possible exception is for 𝜎 of parameter 1 (𝑥2).
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Parameter Statistics Ref r=40 r=400 r=4000
Param0 𝜇* 90.05 87.11 89.97 90.02
Param0 𝜎 31.08 31.99 31.05 31.09
Param1 𝜇* 71.05 69.36 71.11 71.06
Param1 𝜎 28.86 24.10 27.09 26.18
Param2 𝜇* 41.47 40.50 41.38 41.47
Param2 𝜎 17.75 17.31 17.33 17.33
Param3 𝜇* 20.83 20.19 20.76 20.82
Param3 𝜎 11.54 11.53 11.55 11.55

References

Sobol-𝐺* Function

Sobol-𝐺* is a modified version of Sobol-G function proposed in1 initially to avoid excluding singular value at x =
{0.5}. The function reads,

𝐺*(x,a,𝛼, 𝛿) =

𝐷∏︁
𝑑=1

𝑔*𝑖

𝑔*𝑑 =
(1 + 𝛼𝑑) · |2(𝑥𝑑 + 𝛿𝑑 − 𝐼[𝑥𝑑 + 𝛿𝑑]) − 1|𝛼𝑑 + 𝑎𝑑

1 + 𝑎𝑑

where x ∈ [0, 1]𝐷; 𝑎𝑑 ∈ R+ determines the first-order importance of parameter-𝑑; 𝛿 ∈ [0, 1]𝐷 is the shift parameter;
𝛼 ∈ R𝐷+ is the curvature parameter; and 𝐼[∘] is the integer part of the number.

The parameters a and 𝛼 can be adjusted. The particular test function used in this module is 𝐺*
2 (see pp. 265 in1) where

𝛼𝑑 = 1; 𝑑 = 1, 2, · · · , 10

𝑎𝑑 = (0, 0.1, 0.2, 0.3, 0.4, 0.8, 1, 2, 3, 4)

𝛿𝑑 ∼ 𝒰 [0, 1]; 𝑑 = 1, 2, · · · , 10

Analytical Solution

The analytical formulas for the variance terms of the Sobol-𝐺* function for X𝑑 ∼ 𝒰 [0, 1]; 𝑑 = 1, 2, · · · , 10 are the
following

Marginal Variance

V[𝐺*
2] =

[︃
𝐷∏︁

𝑑=1

(1 + 𝑉𝑑)

]︃
− 1

where 𝑉𝑑 is the top marginal variance given below,

Top Marginal Variance

𝑉𝑑 = V𝑑[E∼𝑑[𝐺*
2|𝑋𝑑]] =

𝛼2
𝑑

(1 + 2𝛼𝑑)(1 + 𝑎𝑑)2

Bottom Marginal Variance

𝑉 𝑇𝑑 = E∼𝑑[V𝑑[𝐺*
2|X∼𝑑]] = 𝑉𝑑

∏︁
𝑒 ̸=𝑑

(1 + 𝑉𝑒)

The analytical main- and total-effect sensitivity indices can be computed using their respective definition in relation to
the variance terms given above.

1 A. Saltelli et al., “Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index,” Computer Physics
Communication, vol. 181, no. 2, pp. 259 - 270, 2010.
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Sobol Sensitivity Indices Results

The function was used to test the implementation of the Sobol sensitivity indices. The main-effect (first order) and
total-effect (total order) sensitivity indices are both computed. Both the sampling scheme type and the estimator for
the sensitivity indices were tested. The tested sampling schemes are simple random sampling (srs), latin-hypercube
sampling (lhs) and the sobol sampling (sobol). The tested estimators are janon and saltelli for the main-effect SI and
jansen and sobol for the total-effect SI (see Sobol’ Sensitivity Indices).

The following figure shows the convergence of the main-effect SI (first order) with the number of samples for the
second parameter (param1) of the 𝐺2 function. Each panel shows the janon and saltelli estimators, with their 1 − 𝜎
uncertainties, for a given sampling scheme. The dotted red line is the analytical solution (i.e. the target value).

A similar figure is shown below for the total-effect SI (tot-order) for the jansen and sobol estimators.
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All estimators for the main- and total-effect SI converge to the analytical solution with a sufficient number of samples
(i.e. 104 in the worst case). As expected the sobol and lhs sampling schemes for the design matrix are clearly supe-
rior to the simple random scheme (srs) as the calculated main- and total-effect SI converge faster and with a lower
uncertainies; the sobol sampling scheme appears to be slightly better than lhs. Finally, comparing the estimators the
janon and jansen estimators show slightly better properties than the saltelli and sobol estimators. The better prop-
erties of the estimators and sampling schemes illustrated for param1 can vary slightly from parameter to parameter.
The convergence of the calculation, however, remains. This confirms the good implementation of the SI calculation
routines.

References
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CHAPTER 2

gsa-module Modules reference documentation

Samples Package

Routines to generate generic purpose design of experiment, including simple random sampling (srs), latin hypercube
(lhs), optimized latin hypercube (lhs-opt), and Sobol’ sequence (sobol).

gsa_module.samples.srs

gsa_module.samples.lhs

gsa_module.samples.lhs_opt

gsa_module.samples.sobol

Randomization of the quasi-MC samples can be achieved in the easiest manner by random shift (or the Cranley-
Patterson rotation).

morris Package

test_functions Package

37



gsa-module Documentation, Release 0.5.3

38 Chapter 2. gsa-module Modules reference documentation



CHAPTER 3

Indices and tables

• genindex

• modindex

• search
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